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Abstract: This paper explores the forefront of neuroimaging techniques in Brain-Computer Interfaces (BCIs), focusing on the 

innovative methodologies employed to decode cognitive states. By examining a variety of neuroimaging modalities, including 

functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Magnetoencephalography (MEG), and Near-

Infrared Spectroscopy (NIRS), we delve into the nuanced processes that allow for the interpretation of brain signals to 

understand and categorize human cognitive processes. Our analysis extends to the application of machine learning and 

statistical modeling, which are instrumental in deciphering the complex associations between neurophysiological data and 

cognitive states. Through the lens of BCIs, we discuss the transformative potential of accurately decoding cognitive states for 

applications ranging from medical diagnostics to cognitive enhancement and artificial intelligence integration. This work 

highlights the advancements in neuroimaging BCI techniques and sheds light on the possibilities for human-computer 

interaction, emphasizing the significance of decoding cognitive states in expanding our understanding and interaction with the 

human brain. 

 

Keywords: BCI; fMRI ; EEG ; Cognitive State Decoding.    

 

I.  Introduction 

In the rapidly evolving landscape of technological advancements, Brain-Computer Interfaces (BCIs) stands out as a 

revolutionary frontier, offering a direct pathway for communication between the human brain and external devices. This 

symbiosis between neuroscience and technology has the potential to transcend traditional interaction paradigms, enabling 

control and communication without physical movement, which can be life-changing for individuals with severe motor 

impairments. Despite the remarkable progress in BCI development, the field faces significant challenges, particularly in the 

realms of neuroimaging techniques and the accurate decoding of cognitive states. These challenges stem from the complexity 

of the brain's signals and the intricate patterns that underlie human cognition and behaviors. 

 

The precision with which BCIs can interpret and translate brain signals into actionable commands hinges on the effectiveness 

of neuroimaging methodologies. Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), 

Magnetoencephalography (MEG), and Near-Infrared Spectroscopy (NIRS) are among the key techniques employed to capture 

the dynamic nature of brain activity. Each modality offers unique insights into the brain's workings, yet they also present 

limitations in resolution, temporal and spatial accuracy, and practical applicability in real-time BCI applications. Furthermore, 

the decoding of cognitive states—a crucial aspect of BCI technology—requires sophisticated algorithms that can navigate the 

vast complexity of neural data, translating it into understandable and predictive models of human thought and intent. 

This paper aims to address these challenges by exploring advanced neuroimaging techniques and their application in decoding 

cognitive states within BCIs. Our objectives are twofold: firstly, to provide a comprehensive analysis of the current state-of-the-

art neuroimaging methodologies, evaluating their strengths, limitations, and suitability for various BCI applications; and 

secondly, to delve into the computational strategies for decoding cognitive states, emphasizing the role of machine learning 

and statistical modeling in enhancing the accuracy and reliability of these processes. 

The significance of this research extends beyond the technical advancements it proposes. By improving the fidelity with which 

BCIs can interpret human brain activity, we can unlock new dimensions in human-computer interaction, expand the capabilities 

of assistive technologies, and pave the way for innovative applications in healthcare, education, and beyond. Moreover, this 

work contributes to the foundational understanding of the human brain, offering insights that could influence the development 
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of cognitive therapies, enhance neurorehabilitation techniques, and foster the integration of AI in a manner that is more attuned 

to natural human cognition. 

Structured across several sections, this paper will first review the existing neuroimaging techniques and their application in 

BCIs, followed by an in-depth analysis of cognitive state decoding methodologies. Subsequent sections will explore the 

implications of these advancements for BCI development and discuss potential future directions for research in this dynamic 

field. 

The paper is structured as follows: The following section explains the neuroimaging BCI techniques while the comparison 

between thos techniques are presented in section III. Section IV delves into the decoding of cognitive states.  The challenges in 

accurate decoding and the potential solutions are explained in section V;  finally, the paper concludes in section VI.   

II. Neuroimaging BCI Techniques 

There are several neuroimaging BCI techniques; some of them are presented in this section. 

EEG-Based BCI [6][7] 

Electroencephalography (EEG) serves as the predominant technology in Brain-Computer Interfaces (BCIs), offering several 

advantages for real-time applications. EEG-based BCIs are non-intrusive, portable, and provide excellent temporal resolution. 

However, their spatial resolution is limited, and susceptibility to extraneous noise, such as muscle movements, which poses a 

challenge. These BCIs function by detecting and interpreting the electrical signals generated by neurons in the brain, enabling 

the translation of user intentions into commands for external devices. Figure 2 shows some of the EEG devices.   

The Emotiv EPOC  [1] Flex stands out with its versatile electrode setup, providing 14 or more channels. It offers a sampling 

rate of 128 Hz, striking a balance between channel count and sampling rate [2]. This makes it suitable for applications that 

require moderate spatial resolution and temporal dynamics. In contrast, the NeuroSky MindWave [3] features a single 

electrode/channel but compensates with a high sampling rate of 512 Hz. While its spatial resolution may be limited due to the 

single channel, the high sampling rate enables capturing detailed temporal dynamics in EEG signals. 

The Muse device [4] offers four channels and a sampling rate of 220 Hz, providing a compact and portable option for EEG 

measurements. It is particularly suitable for applications prioritizing ease of use and mobility while still maintaining a 

reasonable balance between channel count and sampling rate. 

Figure 1. EEG Devices. 

The OpenBCI Cyton device [5] offers flexible configurations, ranging from 8 to 64 channels, and a sampling rate between 250 

and 1000 Hz. This versatility allows researchers to adapt the device to their specific needs, whether they require a smaller 

number of channels or higher sampling rates. The OpenBCI Cyton is well-suited for studies that demand various channel counts 

and customizable sampling rates—also, the g.tec g.USBamp device [6] supports a wide range of channel configurations, from 8 

to 64 channels, and offers a high maximum sampling rate of up to 38,400 Hz. This device provides extensive channel options 

and high sampling rates, making it suitable for advanced research and data-intensive applications that require precise temporal 

resolution.  

BrainVision Recorder  [7] offers a scalable solution with support for up to 256 channels and a sampling rate of up to 10,000 Hz. 

It is particularly useful for studies that require a large number of electrodes and demand high-speed data acquisition. The 

BrainVision Recorder [8] excels in allowing researchers to capture data with high temporal resolution. 



The BioSemi ActiveTwo device  [9]  offers options for 32, 64, 128, or 256 channels and supports a maximum sampling rate of 

up to 16,384 Hz. It is well-suited for studies that require high-density EEG recordings and precise spatial mapping of brain 

activity. The BioSemi ActiveTwo provides researchers with the ability to capture detailed information about brain signals across 

a large number of channels. On the other hand, the Neuroelectrics Enobio device supports 8, 16, or 32 channels and offers a 

high maximum sampling rate of up to 32,768 Hz. This device balances channel count and sampling rate, catering to research 

and clinical applications. It is suitable for tasks that require moderate to high spatial and temporal resolution. 

Lastly, the Advanced Brain Monitoring B-Alert X10  [10] features 24 channels and offers a sampling rate of up to 256 Hz. It 

provides a table with moderate channel count and sampling rate, making it a reliable option for various EEG monitoring and 

analysis tasks. The Advanced Brain Monitoring B-Alert X10 is suitable for applications requiring moderate spatial resolution 

and temporal dynamics. 

Table 1 comprehensively compares various EEG devices based on their electrode/channel count and sampling rate. Each device 

offers unique characteristics and capabilities that cater to different research and application needs. 

BCIs based on EEG offer several advantages. They are well-suited for real-time applications due to their non-invasive nature, 

cost-effectiveness compared to other BCI technologies, and ability to provide high temporal resolution. EEG-based BCIs have 

demonstrated promise in various domains, including gaming, neurorehabilitation, and assistive technology. However, there 

are certain limitations associated with EEG-based BCIs. The spatial resolution of EEG is limited, making it challenging to localize 

the source of the signals within the brain precisely. Additionally, noise and artifacts present in EEG data can introduce 

difficulties in accurately interpreting the user's intentions. 

  TABLE 1. Comparison of various EEG devices 

Device Name Electrodes/Channels Sampling Rate (Hz) 

Emotiv EPOC Flex [11] 14+ 128 

NeuroSky MindWave [12] 1 512 

Muse [13] 4 220 

OpenBCI Cyton [14] 8/16/32/64 250-1000 

g.tec g.USBamp [15]   8/16/24/32/64 Up to 38,400 

BrainVision Recorder [16] Up to 256 Up to 10,000 

BioSemi ActiveTwo [17] 32/64/128/256 Up to 16,384 

Neuroelectrics Enobio [18]  8/16/32 Up to 32,768 

Advanced Brain Monitoring B-

Alert X10 [19] 24 Up to 256 

EGI Geodesic EEG System [20] 32/64/128/256 Up to 1,024 

ANT Neuro eego Sports [21] 32/64/128 Up to 2,048 

Mind Media Nexus-10 [22] 4/8/10/19/21/24/32/40/52/64 Up to 2,048 

 

fMRI-BASED BCI [23][24] 

Functional magnetic resonance imaging (fMRI) is a distinct modality employed in Brain-Computer Interfaces (BCIs) that offers 

enhanced spatial resolution, facilitating precise visualization of active brain regions. In comparison to electroencephalography 

(EEG), fMRI systems are characterized by higher costs, larger sizes, and a relatively lower temporal resolution. It involves 

almost the same BCI systems operations as shown in Figure 3.  BCIs that rely on fMRI involve the detection and interpretation 

of changes in blood oxygenation and flow that correspond to neuronal activity in the brain. This is achieved through the 

utilization of a technique known as Blood Oxygen Level Dependent (BOLD) contrast, which enables the mapping and 

comprehension of functional brain activity. 

Compared to electroencephalogram (EEG)-based BCIs, fMRI-based BCIs offer superior spatial resolution. They provide precise 

imaging of active brain areas, enabling researchers to pinpoint the exact location of neuronal activity. fMRI-based BCIs have 

demonstrated promise in research settings, yielding valuable insights into the workings of the human brain. They lay the 

groundwork for potential future applications in areas such as neurofeedback, neurorehabilitation, and other related fields. 

However, fMRI-based BCIs present their own set of challenges. The accessibility of fMRI scanners is limited due to their size, 

cost, and immobility. Moreover, fMRI [24] has lower temporal resolution than EEG, making it less suitable for tracking rapid 

shifts in brain activity. The loud noise and confined space within the scanner can also cause user discomfort.  



 

Figure-3. fMRI-BCI system. 

 NIRS-BASED BCI [24][25] 

Near-infrared spectroscopy (NIRS) [26] is a non-invasive technique, as shown in Figure 4, that offers several advantages over 

EEG and fMRI, including higher spatial resolution and reduced sensitivity to electrical noise. However, it has a lower temporal 

resolution. BCIs based on NIRS utilize variations in oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) levels 

in the brain cortex to interpret neural activity and enable user control of external devices.  

During signal acquisition, near-infrared light within the 700-900 nm wavelength range is emitted onto the scalp [27]. This light 

is partially absorbed by hemoglobin in blood vessels and brain tissue. Detectors placed on the scalp capture the remaining light, 

and changes in the detected light intensity are used to estimate variations in HbO and HbR concentrations [28], reflecting 

changes in brain activity. The obtained NIRS data undergo preprocessing to eliminate noise and artifacts, such as motion or 

ambient light fluctuations. Filtering methods are employed to remove physiological noise, and subsequent processing 

determines relative changes in HbO and HbR concentrations. The translation algorithm, often based on machine learning, then 

interprets these concentration changes to infer the user's intentions. The algorithm can be trained to recognize specific brain 

activity patterns associated with different thoughts or activities. The decoded commands are then utilized to control an external 

device, such as a wheelchair, robotic limb, or computer cursor.  

NIRS-based BCIs hold promise in assistive technology and neurorehabilitation. They offer advantages like non-invasiveness, 

cost-effectiveness, and portability. NIRS provides higher spatial resolution than EEG but is not as robust as fMRI. However, it 

is limited to monitoring cortical activity and has lower temporal resolution compared to EEG.  

 
Figure-4. Selected NIRS channels according to 10–20 International system 

 ELECTROCORTICOGRAPHY (ECoG) [29]  

The initial step in acquiring an electrocorticography (ECoG) is the surgical implantation of electrodes onto specific regions of 

the scalp to achieve high spatial and temporal resolution for accurate brain activity recording. ECoG-based  BCIs utilize the 

analysis of these recorded brain signals to reconstruct motor intentions, speech patterns, and other cognitive processes. Invasive 

electrocorticography (ECoG) is a widely adopted neuroimaging technique employed in BCIs and various neuroscience studies. 

It involves the surgical placement of an electrode grid directly on the brain's surface to capture electrical activity with 

exceptional precision in both space and time, shown in Figure 5. Compared to non-invasive methods like 

electroencephalography (EEG), ECoG offers significantly higher resolution, allowing for precise localization of brain activity. It 

captures a broad range of frequencies, including gamma oscillations and broadband potentials, providing insights into diverse 

cognitive operations. 



ECoG finds clinical utility in epilepsy monitoring, where it helps localize epileptic foci and map brain activity, aiding surgical 

planning. The direct recording of brain activity associated with motor intentions, speech output,  

and other cognitive functions makes ECoG particularly valuable for robust and accurate control in the realm of BCIs. Cortical 

mapping using ECoG, achieved through electrical stimulation and observation of responses, assists in identifying functional 

regions and understanding brain architecture. Signal processing techniques and decoding algorithms are employed to analyze 

ECoG data, extracting relevant features and decoding specific brain states or intentions. 

Figure-5. ECoG BCI 

INTRACORTICAL RECORDING [30] 

Intracortical recording involves the surgical implantation of electrodes into brain tissue, enabling precise and targeted 

recordings of neuronal activity shown in Figure 6. This method offers exceptional accuracy and specificity, making it invaluable 

for advanced applications such as state-of-the-art prostheses and brain control. By capturing neural signals such as motor 

instructions or sensory information, intracortical recording allows for high-fidelity decoding. This sophisticated 

neurophysiological technology finds applications in fields like Brain-Computer Interfaces (BCIs) and neuroscience research. 

The procedure entails the placement of microelectrode arrays directly into the brain, enabling the capture of high-resolution 

recordings of neuronal activity. This approach provides researchers with detailed insights into the functioning of the brain at a 

cellular level. Intracortical recording holds great promise for understanding brain dynamics and developing innovative 

interventions for neurological conditions. 

 
Figure-6. International Recording 

 Transcranial Magnetic Stimulation (TMS) [31] 

Magnetic stimulation (TMS) is a non-invasive method of stimulating the brain that has found widespread usage in neuroscience 

studies and clinical settings. Using powerful magnetic fields, electric currents are produced in targeted areas of the brain. TMS's 

ability to alter neuronal activity makes it a promising method for researching and perhaps treating a wide range of neurological 

and psychiatric disorders. A coil, see Figure 7, is placed on or near the head, often over the area of the brain to be stimulated, 

during a TMS session. A rapidly shifting magnetic field is produced by the coil when a very short and powerful electrical 

current is conducted across it. Depending on the characteristics of stimulation, this magnetic field may either stimulate or inhibit 

neuronal activity by inducing electrical currents in the underlying brain tissue. Single-pulse TMS, repeated TMS, and 

configured TMS are all viable methods of administering this therapy. Evaluation of brain excitability and motor cortex function 

mapping are both possible using single-pulse TMS. Effects on brain activity may be maintained for longer using repetitive TMS 

(rTMS), in which a train of magnetic pulses is delivered over a set period of time. Theta burst stimulation (TBS) is an example 

of a patterned stimulation method that allows for more exact control over the time of delivered stimuli. 

TMS is widely utilized in academic contexts to probe the connections between certain brain areas and mental operations. 

Researchers may examine the roles and relationships of various brain networks by temporarily altering neuronal activity in 

specific regions. Combining TMS with other neuroimaging methods, such functional Magnetic Resonance Imaging (fMRI), may 

help researchers learn more about the brain's role in influencing behavior. Clinical trials using TMS for diseases including major 

depressive disorder, schizophrenia, and chronic pain have showed encouraging results. It is also possible to modify abnormal 

brain activity and reduce symptoms using individualized repetitive TMS regimens.   

 



 

Figure-7. TMS system 

 PET- BCI [32] 

PET as shown in Figure 8 is an abbreviation for Positron Emission Tomography (PET), which is a form of imaging technique 

used in medicine. This method involves injecting a tiny quantity of radioactive material into the body, which is subsequently 

detected using a PET scanner. The scanner monitors the movement and concentration of this material, producing detailed 

pictures of the inside of the body. However, PET is not generally used for BCI technology as of our knowledge limit in 2021. 

BCI systems often depend on other ways to detect brain activity, such as electroencephalography (EEG), which records electrical 

activity along the scalp, or invasive techniques such as Electrocorticography (ECoG), which requires inserting electrodes 

directly into the brain's surface. These approaches are more adapted to the real-time monitoring of brain activity required for 

BCI. 

PET scanning, on the other hand, is a relatively time-consuming procedure that exposes the body to tiny quantities of radiation. 

Therefore, rather than real-time brain-computer interface, it is more typically employed in diagnostic and research situations.   

 

Figure-8. PET BCI system 

 HYBRID BCIs  [33][34] 

Hybrid BCIs combine multiple techniques or modalities to enhance BCI performance and versatility. For example, 

combining EEG with eye-tracking allows gaze-based control, or combining EEG with EMG enables control based on both 

motor imagery and muscle activity. These combinations can improve the accuracy and reliability of BCI systems. Hybrid 

Brain-Computer Interfaces (BCIs) combine multiple neuroimaging modalities or sensing techniques to leverage their 

complementary strengths and improve the overall performance of BCIs.  Figure 9 shows some of the possible hybrid 

signals that can be combined together for better signal interpretation and control.   



  

Figure- 9. Hybrid BCI 

 

III. Comparison Between Neuroimaging BCI Techniques 

Table 2 presents a comparison of various neuroimaging techniques and their respective brain-computer interface (BCI) 

applications. Each technique has unique characteristics and considerations that impact their suitability for different purposes. 

EEG-Based BCI demonstrates high temporal resolution, making it well-suited for capturing swift changes in brain activity. 

However, its limited spatial resolution and susceptibility to noise pose challenges in accurately localizing neural sources. EEG-

based BCIs are non-invasive, portable, and relatively cost-effective, contributing to their widespread acceptance and 

accessibility. On the hand, fMRI-Based BCI offers high spatial resolution, allowing for detailed localization of neural activity. 

However, its moderate temporal resolution and lack of portability limit its real-time applications. fMRI-based BCIs are non-

invasive but require specialized facilities and incur high costs, limiting their accessibility primarily to research settings. 

NIRS-Based BCI provides a moderate compromise between spatial and temporal resolution. Its non-invasive nature and 

portability enhance accessibility, although its limited spatial and temporal resolution compared to other techniques should be 

considered. Interpretation of NIRS signals can be complex due to the relationship between measured signals and underlying 

neural activity. Also, ECoG and intracortical recording techniques offer exceptional spatial and temporal resolution by directly 

measuring neural activity from implanted electrodes. These invasive approaches provide higher information bandwidth, but 

their usage is limited to specialized clinical and research settings due to surgical risks, lack of portability, and the need for expert 

training in electrode implantation and data analysis. 

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that allows for stimulation of brain areas. While TMS 

does not directly measure brain activity, it can induce observable effects. TMS is portable, relatively safe when used following 

guidelines, and has gained acceptance for various applications, though interpretation involves understanding the effects of 

stimulation. At the same time, PET-BCI, based on positron emission tomography, provides moderate to high spatial resolution 

but exhibits low temporal resolution. Its invasive nature, use of radioactive tracers, and lack of portability restrict its 

applicability to research settings and specific clinical contexts. Interpretation of PET data involves considering the dynamics of 

the tracers, and specialized training in data acquisition and analysis is required. 

Finally, hybrid BCIs combine multiple techniques to leverage their complementary strengths. The characteristics of hybrid BCIs 

vary based on the specific modalities involved, allowing for customization and optimization based on the desired application. 

This flexibility comes with varied considerations in terms of spatial and temporal resolution, invasiveness, signal-to-noise ratio, 

portability, cost, and training requirements. 

 

 

 

 

 

Table 2. Comparison between the different techniques 
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IV. Decoding Cognitive States 

The term "decoding cognitive states" [35][36] refers to the act of understanding and interpreting an individual's mental or 

cognitive states through the use of neurophysiological or behavioral measurements. The process entails the extraction of 

pertinent data from brain signals, physiological responses, or behavioral patterns to deduce the fundamental cognitive 

processes or states. Decoding cognitive states has garnered considerable attention in neuroscience, psychology, and cognitive 

science due to its prospective utility in diverse areas such as human-computer interaction, clinical diagnosis, mental health 

evaluation, and cognitive augmentation. By understanding cognitive states, researchers and practitioners aim to better 

understand cognitive processes, such as attention, memory, emotion, decision-making, and perception. 

Decoding cognitive states may be done using a variety of ways, including neuroimaging techniques like functional magnetic 

resonance imaging (fMRI), electroencephalography, magnetoencephalography, and near-infrared spectroscopy (NIRS) [36][37]. 

These methodologies can capture neural activity and provide significant information for examination. Decoding cognitive states 

requires the use of machine learning and statistical modeling. These methodologies facilitate the creation of computational 

methods and structures that are capable of acquiring knowledge regarding the correlations and associations between cognitive 

states and neurophysiological or behavioral data. Through the utilization of labeled data, these models can be trained to project 

or categorize cognitive states in unlabeled data. 

The categorization of brain activity in response to various mental activities or inputs is one example of how cognitive states are 

decoded. Through the examination of brain activation patterns, researchers have the ability to discern unique neural signatures 

that correspond to particular cognitive states. In addition,  decoding techniques have been utilized to differentiate various 

visual stimuli, anticipate the attentional focus of individuals, or categorize emotional states on the basis of patterns of brain 

activity. 

BCIs  have transformed our awareness of and interaction with the human brain. BCIs offer a broad range of applications as a 

technology interface that directly connects with the brain, from medical and rehabilitative purposes to gaming, cognitive 

advancement, and even possible future applications in artificial intelligence. The term encoding, which refers to the 

transformation of brain activity into useable control signals, resides at the heart of every BCI system. The encoding paradigm - 

the particular approach used for transforming this brain activity - may have a significant impact on the performance and 

placement of a BCI. 

There are multiple basic encoding paradigms utilized in BCIs, each with its own set of strengths, shortcomings, and 

distinguishing features. These paradigms, summarized in Table 3,  are roughly classified as non-invasive or invasive, 

depending on whether or not electrodes are implanted within the brain. In general, non-invasive treatments are safer and more 

pleasant for the user, although intrusive approaches may often give more complete and precise information on brain activity. 

Motor Imagery (MI), Steady-State Visual Evoked Potentials (SSVEPs), P300 Event-Related Potentials (ERPs), Slow Cortical 

Potentials (SCPs), and Motor-Related Cortical Potentials (MRCPs) are among the non-invasive paradigms, each having its own 

distinct focus and application. Direct Motor Mapping, Spectral Features, Neural Spike Trains, Cortical Spiking Activity, Local 

Field Potentials (LFPs), and other invasive paradigms are examples. Furthermore, paradigms like as Brain State Decoding, 

Cognitive Event-Related Potentials (CERP), Rapid Serial Visual Presentation (RSVP), and Error-Related Potentials (ErrPs) 

provide new understanding and controls. 

The subsequent paragraphs delve into each of these paradigms, providing a more in-depth comprehension of their function, 

implementation, and role within the larger BCI landscape. We acquire a better understanding of the intricacy and promise of 

Brain-Computer Interface technology by investigating these paradigms. 

MOTOR IMAGERY (MI) 



MI BCIs function by identifying changes in brain activity that correspond to imagined movement. Most of the time, this means 

imagining the hands or feet moving. For this purpose, the BCI frequently utilizes EEG signals from the motor cortex, which can 

translate to various actions within a computer interface, such as moving a cursor or selecting an option. There are two primary 

frameworks that aim to explain the nature of motor imagery: motor simulation theory and motor emulation theory.  

The Motor Simulation Theory (MST) offers a constructive explanation of the relationship between imagery tasks like motor 

imagery (MI task), observation, and the intention of motor tasks, in relation to the actual execution of motor tasks (ME tasks). 

Motor emulation theory is one of the frameworks used to understand motor imagery and its relationship to actual motor 

execution. It proposes that during motor imagery, the brain generates internal motor commands that mimic the patterns of 

neural activity associated with executing the intended motor action. In other words, motor imagery involves the internal 

emulation or simulation of motor commands without actual muscle activation. 

MI has attracted significant attention in the realm of BCIs [38][39][40] due to its potential for decoding a user's intention or 

desired action based on their neural activity. By detecting and analyzing the brain signals associated with motor imagery, BCIs 

based on motor imagery allow individuals to control external devices or interact with their surroundings using only their 

imagination. The underlying principle is that the brain generates distinct patterns of electrical activity when envisioning various 

movements, such as manipulating a hand, foot, or prosthetic limb. 

One of the benefits of MI is that it has been extensively studied and understood, making it one of the most extensively researched 

paradigms in BCI development. Nevertheless, achieving accurate control over the imagined movements in the context of  MI 

requires training and familiarization. Individuals must learn to generate consistent and distinct brain activity patterns in 

response to various motor tasks. The training plan typically includes mental exercises, professional guidance, and feedback to 

improve the user's competence in generating reliable signals associated with mental imagery. 

STEADY-STATE VISUAL EVOKED POTENTIALS (SSVEPS) 

Steady-state visual Evoked Potentials (SSVEPs) have emerged as an instrumental tool in the field of rehabilitation research. 

They are generated by the brain's electrical responses to visual stimuli that flicker at specific frequencies, providing a substantial 

understanding of the complexities of neural activity and cognitive processing. Furthermore, this steady-state neural response 

offers a unique avenue for an in-depth exploration of the brain's sensitivity to visual stimulation and its capability to 

synchronize with oscillatory patterns. 

Equipped with methodologies such as electroencephalography (EEG) or magnetoencephalography (MEG), researchers can 

detect and dissect SSVEPs. Consequently, this allows them to delve deeper into the neural mechanisms that underpin these 

responses, thus unlocking a more profound understanding of the brain's functioning. 

Due to their potential to facilitate the development of innovative interventions and assistive technologies, SSVEPs have 

garnered significant attention within the realm of rehabilitation research [104]. By creating an association between specific visual 

stimuli and various motor tasks, SSVEPs enable a more nuanced exploration of the neural correlates of motor control and an 

objective assessment of the effectiveness of rehabilitation measures. 

In addition, SSVEPs offer a plethora of opportunities for investigating cognitive processes and impairments in individuals 

diagnosed with neurological disorders [41]. By examining the brain's responses to cognitive tasks administered via SSVEP 

paradigms, researchers are not only able to assess the efficacy of cognitive rehabilitation techniques but also evaluate the 

outcomes of various treatment procedures. 

Lastly, the application of SSVEPs has been seamlessly integrated into assistive technologies with the overarching aim of 

enhancing the quality of life for individuals living with disabilities. Leveraging SSVEPs as a control mechanism, these 

individuals are empowered to manipulate external devices such as prosthetics, wheelchairs, and robotic systems solely with 

their brain activity and visual attention. 

P300 EVENT-RELATED POTENTIALS (ERPS) 

P300 ERP Brain-Computer Interfaces (BCIs) function through the identification of a distinct event-related potential (ERP) 

termed the P300 waveform. Evident approximately 300 milliseconds post the perception of an unexpected or significant input, 

the P300 response is broadly employed in BCIs to enable communication and control tasks. Recognized as a valuable tool in 

rehabilitation research, the P300 ERP results in a unique positive deflection in the electroencephalogram (EEG) waveform 

following exposure to an uncommon or task-related stimulus. 



This neural response, having been exhaustively studied and applied across various contexts, holds particular prominence in 

the sphere of rehabilitation, notably in the motor and cognitive domains. Scholars have leveraged the P300 response to architect 

innovative techniques aimed at augmenting motor control, communication, and cognitive functioning in those affected by 

neurological disorders or injuries [42]. 

In motor rehabilitation, P300 ERPs have been instrumental in designing brain-computer interfaces (BCIs) that empower 

individuals with motor impairments to manipulate external devices or prosthetic limbs effectively. By recognizing and 

interpreting the P300 response elicited by visually presented targets, users achieve precise and reliable control over various 

devices, thereby fostering improved mobility and autonomy. 

Concurrently, the application of P300 ERPs extends into cognitive rehabilitation as well. Employed in the development of 

assistive technologies, the P300 response aims to boost communication and information processing capabilities in individuals 

with communication disorders or cognitive impairments. Through the detection of the P300 signal associated with specific 

stimuli or letters, users can construct words or select options in a communication interface, thus reviving or enhancing their 

ability to interact and express themselves. 

Numerous research studies have delved into the efficacy of P300 ERPs within the rehabilitation context. These encompass 

applications in stroke rehabilitation, spinal cord injury, amyotrophic lateral sclerosis (ALS), among other neurological disorders 

[43][44][45]. Their findings have underscored the feasibility and potential of P300 ERPs as a rehabilitation tool, illustrating 

improvements in motor function, communication skills, and the overall quality of life in participants. 

SLOW CORTICAL POTENTIALS (SCPS) 

Slow Cortical Potentials (SCPs) [46], which refer to the low-frequency fluctuations observed in the electroencephalography 

(EEG) signal, are characteristically gradual variations in cortical potentials over a significant period. In the realm of 

rehabilitation research, these SCPs have increasingly been recognized as potential neurophysiological markers and therapeutic 

targets for various conditions. These fluctuations, which occur within a time range spanning from seconds to minutes, are 

thought to indicate cortical excitability and modulation of neural networks linked with cognitive and motor processes. SCP-

based Brain-Computer Interfaces (BCIs) generate control signals by leveraging these intentional modifications, enabling users 

to purposely alter their brain state. 

Surface electrodes positioned on the scalp facilitate the non-invasive monitoring of SCPs. In recent years, the scientific 

community has undertaken extensive studies exploring the potential of SCPs as a tool within rehabilitation contexts, such as 

evaluating brain plasticity, monitoring treatment progress, and designing therapeutic interventions [47]. SCPs are also being 

studied as potential indicators of cortical reorganization and recovery following strokes. Investigations have focused on the 

relationship between SCP characteristics and motor function, attempting to determine the impact of SCP-based neurofeedback 

training on enhancing motor recovery in stroke patients. 

Similarly, SCPs are showing promise in movement disorders such as Parkinson's disease and dystonia, particularly in assessing 

and modulating cortical activity. The primary focus has been on employing SCP-based biofeedback training to alleviate motor 

symptoms and enhance neuroplasticity. 

Apart from motor functions, SCPs are also being studied as potential markers of cognitive processes such as attention, memory, 

and executive functions. For individuals presenting with attention deficits, traumatic brain injuries, or cognitive impairments, 

researchers are exploring the utilization of SCP-based neurofeedback training as a strategy to augment cognitive performance. 

Through SCP-based neurofeedback training, which involves real-time feedback on SCP activity, individuals can learn to 

modulate and control their brain responses. This methodology is being investigated in diverse rehabilitation environments with 

the goal of improving self-regulation of cortical excitability and consequently enhancing functional outcomes. 

MOTOR-RELATED CORTICAL POTENTIALS (MRCPS) 

Movement-Related Cortical Potentials (MRCPs) [48] are specific brain signals associated with the planning and execution of 

voluntary motor actions. These potentials are beneficial for real-time control applications in Brain-Computer Interfaces (BCIs) 

due to their occurrence before actual physical movement. Tools such as electroencephalography (EEG) can capture these signals, 

which play a critical role in exploring motor control, evaluating motor performance, and innovating therapeutic interventions 

in the rehabilitation field. 

Significantly, neurofeedback training leveraging MRCPs has shown potential within rehabilitation contexts. By offering real-

time MRCP feedback, individuals can learn to modulate their brain activity to enhance motor control. This innovative technique 



promotes functional recovery in conditions such as stroke rehabilitation and spinal cord injuries, among other motor 

impairments. 

In the realm of motor rehabilitation, the development of BCIs has effectively incorporated MRCPs [49]. By recognizing specific 

MRCP patterns linked to particular motor intentions, individuals can utilize their brain signals to manipulate external devices 

or robotic systems. Such BCIs based on MRCPs pave the way for new possibilities in restoring motor function and improving 

the quality of life for those with motor disabilities. 

Furthermore, rehabilitation interventions can be adapted and optimized in real-time through MRCP monitoring. By observing 

MRCPs during motor tasks, therapists can optimize motor learning and recovery by finely tuning the intensity and timing of 

interventions. This MRCP-based adaptive rehabilitation holds the promise to enable personalized treatment approaches. 

In addition, MRCPs have been employed in motor imagery training paradigms. By integrating MRCP feedback during 

imagined movements, individuals can enhance their motor imagery skills, potentially improving their motor function. This 

technique has been researched across a spectrum of conditions, from stroke rehabilitation to the enhancement of athletic 

performance. 

DIRECT MOTOR MAPPING (INVASIVE BCIS) 

Brain-Computer Interfaces (BCIs) that utilize Direct Motor Mapping techniques involve the surgical implantation of electrodes 

into the motor cortex. The electrodes are designed to detect neural activity corresponding to specific movements, offering a 

more direct and frequently more accurate method to discern movement intentions. It is crucial to note, however, that this 

method requires invasive surgery, which brings inherent risks and ethical considerations [50]. 

This invasive BCI paradigm involves the direct recording of motor-related brain activity. Consequently, it enables the extraction 

of neural signals from the motor cortex, which are then decoded for the purpose of controlling external devices or assistive 

technologies. Over time, Direct Motor Mapping has shown potential across a range of applications, rehabilitation being a 

primary example. 

The efficacy of Direct Motor Mapping has been thoroughly examined, particularly as a technique to enhance motor 

rehabilitation and re-establish functional movement in individuals with motor impairments. Through this approach, research 

has spurred the creation and refinement of strategies aimed at facilitating recovery and improving the quality of life for those 

affected by conditions such as stroke, spinal cord injury, and limb loss. 

Moreover, the application of Direct Motor Mapping extends to the study of motor skill acquisition and improvement. By 

observing neural activity during the stages of acquiring and consolidating motor skills, researchers can gain valuable insights 

into the neural mechanisms that drive the learning process. This crucial information can inform the optimization of 

rehabilitation protocols and interventions to accelerate and enhance motor recovery. 

Importantly, Direct Motor Mapping has contributed significantly to our understanding of neuroplasticity and brain 

reorganization following motor impairments. Studies have explored how the brain adapts and restructures its neural networks 

in response to rehabilitation interventions post-injury or disability. These findings further support the development of tailored 

rehabilitation strategies that leverage the brain's inherent plasticity to optimize recovery outcomes. 

Finally, in the context of rehabilitation research [50], Direct Motor Mapping has been integrated into closed-loop feedback 

systems. These systems enhance neurofeedback and motor learning by delivering real-time feedback based on decoded neural 

signals. Such a strategy encourages active participation in rehabilitation and increases the efficacy of therapeutic interventions. 

SPECTRAL FEATURES (INVASIVE BCIS) [51] 

Spectral features, the characteristics associated with a signal or waveform's frequency content, hold significant relevance in 

brain-computer interfaces (BCIs). BCIs leverage the strength of specific EEG frequency bands to infer a user's cognitive state. 

Variations in power across different frequency ranges can denote distinct cognitive states, such as concentration or relaxation, 

thereby offering insights into the user's current mental state. Invasive brain-computer interfaces (IBCIs), widely utilized in 

rehabilitation research, present rich spectral features. These IBCIs interpret and implement the intended user commands by 

identifying and harnessing the specific frequency components in neural signals. 

The scope of spectral characteristics extends to motor rehabilitation programs, where invasive BCIs have found substantial 

applications. These BCIs, based on spectral features, empower individuals to command robotic prosthetic limbs, exoskeletons, 

or functional electrical stimulation systems. This is achieved by decoding the neural activity associated with the intention of 



movement. The ultimate goal of this technology is to restore motor function, thereby enhancing the quality of life for individuals 

with paralysis or limb deficiencies. 

Moreover, in stroke rehabilitation, invasive BCIs have capitalized on spectral features extracted from invasive recordings to 

encourage motor recovery. By discerning and decoding neural signals aligned with the intent to move, these BCIs contribute to 

regaining motor control and fostering neuroplasticity. The potential of spectral feature-based IBCIs has also been demonstrated 

in aiding individuals with spinal cord injuries. These BCIs, by converting neural activity into control commands, pave the way 

for direct interaction with external devices. This includes assistive technology, environmental control systems, or 

neuroprosthetic devices, ultimately bolstering autonomy and improving quality of life. 

Within the broader domain of neurorehabilitation, spectral features continue to be an area of extensive research. Signals 

pertinent to cognitive processes, such as attention and memory, are decoded through invasive BCIs employing spectral analysis 

techniques. This research is geared towards developing BCI-based interventions to augment cognitive function and aid in the 

recovery of cognitive impairments stemming from brain injuries or neurodegenerative diseases. 

NEURAL SPIKE TRAINS (INVASIVE BCIS) [52][53] 

Neural Spike Train Brain-Computer Interfaces (BCIs) operate by discerning the unique activation patterns of neurons. This 

technique involves the implantation of invasive electrodes to record individual neurons' action potentials, commonly referred 

to as "spikes." As a burgeoning methodology for decoding and employing neurons' firing patterns for control and 

communication, Neural Spike Train BCIs have gained prominence within rehabilitation research due to their potential to 

enhance motor recovery and restore function among individuals with neurological impairments. 

Invasive BCIs, facilitated by the implantation of electrodes in the brain, allow for the direct measurement of neuronal activity. 

A variety of methods, such as microelectrode arrays and single-unit recordings, are harnessed to capture these neural spike 

trains. The resulting recordings offer a profound understanding of individual neurons' firing patterns and temporal dynamics. 

Interpreting the wealth of information contained within neural spike trains requires sophisticated algorithms and machine 

learning techniques. Researchers can extract critical motor-related data by analyzing aspects such as discharge rates, spike 

timings, and patterns, and decode intended movements or commands. Due to their high temporal resolution and precise 

control, Neural Spike Trains are ideally suited for closed-loop prosthetic control. 

Further applications of this technology can be seen in the realm of prosthetic devices. Individuals suffering from limb loss or 

motor impairments can regain dexterity and perform natural movements. This is achieved by decoding neural signals 

associated with the intended movements. 

Moreover, Neural Spike Trains offer invaluable insights into the processes that govern motor learning and recovery. Through 

the careful analysis of spike patterns, researchers gain an understanding of neural plasticity. This understanding can be 

harnessed to track rehabilitation progress and devise tailored interventions for a range of neurological conditions, including 

stroke and spinal cord injuries. 

COGNITIVE EVENT-RELATED POTENTIALS [53][54] 

BCIs that harness Cognitive Event-Related Potentials (ERPs) capitalize on ERPs associated with cognitive processes, inclusive 

of semantic processing and the recognition of anomalous stimuli. Notable examples encompass the N400 potential, tied to 

semantic inconsistencies, and the mismatch negativity potential (MMN). 

ERPs, as the brain responses reflecting cognitive processes, serve as integral tools across various research disciplines, including 

rehabilitation. Furthermore, they offer profound insights into cognitive functioning, serving as pivotal evaluative tools. By 

leveraging the informational richness of ERPs, researchers can assess and augment cognitive capabilities in individuals 

participating in rehabilitation interventions. 

CORTICAL SPIKING ACTIVITY [55] 

Brain-computer interfaces (BCIs) capable of decoding the activity of individual neurons or neuron clusters serve as a powerful 

tool for deciphering unique neural firing patterns associated with distinct cognitive states or tasks. This invasive approach, 

focused on measuring and analyzing cortical spiking activity, offers profound insights into brain functionality. It has attracted 

considerable attention in rehabilitation research, illuminating promising pathways for augmenting therapeutic interventions 

and enhancing recovery outcomes. 



Researchers harness the decoding and comprehension of the neural activity integral to motor control and learning, employing 

cortical spiking activity to devise innovative neurorehabilitation methodologies. By examining the spiking patterns of neurons 

in motor regions, scientists can explore the neuroplastic changes linked to the acquisition and learning of motor skills. 

Certain activity patterns, like amplified firing rates and synchronization, have been demonstrated to align with the development 

and enhancement of motor skills. Aiming to optimize neurorehabilitation protocols and boost motor recovery, researchers are 

leveraging the decoding of cortical spiking activity. 

Closed-loop feedback systems, incorporating cortical spiking activity to furnish real-time feedback and adjust rehabilitation 

interventions, have been a focus of research. These systems can fine-tune motor training protocols, facilitate skill acquisition, 

and stimulate neuroplastic changes through the continual monitoring of neural activity and delivering appropriate feedback. 

Significantly, these closed-loop systems, with the integration of cortical spiking activity, have shown encouraging results in 

areas such as stroke rehabilitation, motor recovery post spinal cord injury, and treatment of other neurological disorders. 

LOCAL FIELD POTENTIALS (LFPS) [56] 

Local Field Potentials (LFPs) represent the collective activity of neural populations, capturing this information via invasive 

electrodes. This method offers a nuanced measure of neuronal activity in a specific brain region, harmonizing spatial resolution 

and signal quality to provide unique insights into network-level brain dynamics and functional connectivity. The role of LFPs 

in rehabilitation research has been significant, particularly in the realm of neurorehabilitation. 

The link between motor-related cortical activity and motor recovery has been the subject of numerous studies involving patients 

with neurological conditions such as stroke, spinal cord injury, and Parkinson's disease. Through the analysis of LFP patterns, 

the scientific community aims to unravel the underlying mechanisms of motor recovery, thereby facilitating the development 

of specialized rehabilitation techniques. 

Furthermore, LFPs have been instrumental in advancing Brain-Computer Interfaces (BCIs) for individuals with motor 

impairments. Innovative systems have been developed that allow patients to manipulate external devices or robotic prostheses 

using decoded LFP signals associated with motor intentions or imagined movements. 

In addition to these applications, LFPs have proven valuable in examining neural plasticity and learning processes within the 

context of rehabilitation. This utility underscores the profound potential LFPs possess in furthering our understanding of brain 

functionality and their significant role in refining rehabilitation techniques. 

RAPID SERIAL VISUAL PRESENTATION (RSVP) [57] 

Rapid Serial Visual Presentation (RSVP) Brain-Computer Interfaces (BCIs) leverage EEG responses to target items within a 

quick succession of visual stimuli, a method that holds substantial potential for applications such as "brain spellers." In these 

applications, users can select letters or words by focusing on them as they appear in the rapidly changing visual stream. 

RSVP has been extensively researched as a potential tool for enhancing therapeutic interventions and promoting functional 

recovery, especially in individuals with neurological impairments. Notably, it has been examined for its capacity to boost 

cognitive functions, including attention, working memory, and the speed of information processing. Studies have targeted 

individuals with cognitive impairments arising from stroke, traumatic brain injury, or neurodegenerative disorders, with the 

objective of improving cognitive abilities and encouraging functional independence. 

Further, in the realm of language and literacy rehabilitation, RSVP proves beneficial. By presenting words or sentences at a fast 

pace, it can enhance reading speed, word recognition, and comprehension in people grappling with language-related disorders 

like aphasia or dyslexia. In doing so, RSVP aids in honing language processing skills and facilitates improved communication 

abilities. 

RSVP's usefulness extends to the sphere of motor rehabilitation, where it is used to augment motor planning, coordination, and 

execution. With the quick presentation of visual cues or target stimuli, it can aid motor learning and retraining in patients with 

motor impairments arising from various neurological disorders, ultimately promoting motor recovery and functional 

restoration. 

RSVP can also be a potent tool to train and enhance concentration and executive functions. By manipulating factors like the 

timing, complexity, and spatial distribution of visual stimuli, RSVP tasks can help individuals allocate their attention effectively, 

transition smoothly between tasks, and inhibit irrelevant information. These training paradigms aim to bolster attentional 

processes and executive functioning in different rehabilitation settings. 



The integration of RSVP with virtual reality (VR) technology can generate immersive and engaging rehabilitation environments. 

VR-based RSVP applications provide multisensory feedback and interactive experiences, enabling users to practice functional 

tasks in a controlled, realistic environment. This method has been explored across various rehabilitation domains, including 

balance training, gait rehabilitation, and activities of daily living (ADL) retraining, underlining its potential to transform 

traditional therapeutic approaches. 

ERROR-RELATED POTENTIALS (ERRPS) [58] 

ErrP Brain-Computer Interfaces (BCIs) are designed to detect ErrP potentials, neuro-responses that manifest when a person 

identifies an error. The utilization of these potentials paves the way for the evolution of adaptive BCIs that possess the capability 

to recognize and rectify their interpretation errors in real time. This aspect holds the potential to significantly enhance the 

efficiency and accuracy of BCI systems. 

ErrP, or Error-Related Potentials, are distinct brain responses that transpire when cognitive tasks are disrupted by errors or 

unforeseen occurrences. These potentials have gained recognition as a beneficial tool in rehabilitation research, proving 

instrumental for assessing and augmenting cognitive functionality and motor learning for individuals participating in 

rehabilitation programs. Researchers, by probing into the neural responses tied to errors, aim to gain understanding about the 

underlying cognitive processes and devise interventions that can boost rehabilitation outcomes. 

Extensive research on ErrPs has been conducted in various rehabilitation contexts, inclusive of motor, cognitive, and 

neurorehabilitation. Within the scope of motor rehabilitation, ErrPs are harnessed to appraise motor performance and error 

detection during tasks such as reaching, grasping, and walking. Through the examination of ErrP signals, researchers can assess 

the progress of motor learning, discern specific error patterns, and tailor interventions to counteract motor impairments. 

ErrPs offer insights into cognitive processes, such as attention, response monitoring, and error detection, crucial for cognitive 

rehabilitation. Utilizing ErrPs, researchers have curated neurofeedback-based training programs. In these programs, 

individuals receive real-time feedback about their error-related brain activity, enabling them to enhance their error recognition 

abilities, attentional control, and overall cognitive performance. 

Specifically, ErrP-based research in neurorehabilitation primarily focuses on patients grappling with neurological disorders or 

brain injuries. By scrutinizing ErrP responses, researchers endeavor to comprehend the neural mechanisms underlying 

cognitive deficits. This understanding aids in developing customized interventions to expedite functional recovery. In this 

context, ErrPs act as objective markers of cognitive function, providing invaluable feedback that allows for modifying 

rehabilitation strategies to meet each patient's unique needs. 

V. Challenges in accurate decoding and potential solutions 

Accurately decoding cognitive states poses several challenges due to complexity of brain processes and neuroimaging 

techniques' limitations. 

One of the significant obstacles in accurate decoding is handling noisy and variable data. Neuroimaging data, such as those 

acquired from fMRI or EEG techniques, often displays inherent variability and noise, affecting the decoding process's reliability 

and accuracy. Preprocessing methods, including denoising algorithms and artifact removal techniques, are commonly 

employed to mitigate noise and enhance data quality. Additionally, collecting large-scale datasets and implementing data 

augmentation approaches have been beneficial in capturing data diversity and improving generalization capabilities. 

Table 3.  Encoding paradigms 
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Paradigm Description Advantages Disadvantages Applications 

Frequencies 

Used 

Motor Imagery 

(MI) 

Mental rehearsal of 

motor movements. 

 Widely studied 

and understood 

Requires training for 

users to achieve 

accurate control 

Rehabilitation, 

assistive 

technology 

Mu (8-13 Hz), 

Beta (13-30 Hz) 

Steady-State 

Visual Evoked 

Potentials 

(SSVEPs) 

Brain responses to 

flickering visual 

stimuli. 

 Fast and accurate 

detection 

Limited to a discrete 

number of selectable 

stimuli 

Assistive 

technology, 

gaming 

10-60 Hz 

(commonly 10, 

15, 20, 30 Hz) 

P300 Event-

Related 

Potentials 

(ERPs) 

Positive deflection 

reflecting attention. 

Natural and 

intuitive response 

Slow response times, 

limited 

communication rate 

Spelling devices, 

cognitive tasks 

1-15 Hz 

(commonly 3-6 

Hz) 

Slow Cortical 

Potentials 

(SCPs) 

Slow changes in 

electrical brain 

activity. 

Robust and reliable 

signals 

Requires prolonged 

mental tasks, limited 

communication rate 

Cursor control, 

spelling devices 

0-1 Hz (DC 

shift) 

Motor-Related 

Cortical 

Potentials 

(MRCPs) 

Brain potentials 

associated with 

movement. 

 Natural and 

intuitive response 

Low signal-to-noise 

ratio, complex 

detection algorithms 

Prosthetic control, 

rehabilitation 

0-1 Hz 

(readiness 

potential) 

Direct Motor 

Mapping 

(Invasive BCIs) 

Direct recording of 

motor-related brain 

activity. 

High spatial 

resolution, precise 

control 

 Invasive procedure, 

limited accessibility 

and ethical concerns 

Prosthetic control, 

research 

N/A (direct 

mapping) 

Spectral 

Features 

(Invasive BCIs) 

Analysis of 

frequency 

components in 

brain signals. 

Accurate and 

reliable control 

Invasive procedure, 

complex signal 

analysis 

Prosthetic control, 

research 

Various 

(subject-

specific) 

Neural Spike 

Trains (Invasive 

BCIs) 

Recording and 

analysis of 

individual neuron 

spikes. 

High temporal 

resolution, precise 

control 

Invasive procedure, 

complex decoding 

algorithms 

Prosthetic control, 

research 

Various 

(subject-

specific) 

Cognitive Event-

Related 

Potentials 

Brain responses 

related to cognitive 

processing. 

Reflect cognitive 

processes, useful for 

complex tasks 

Noisy signals, 

requires extensive 

data analysis 

Mental workload 

assessment, 

diagnosis 

Various (task-

dependent) 

Cortical Spiking 

Activity 

Recording and 

analysis of 

individual neuron 

spikes in the cortex. 

High temporal and 

spatial resolution 

Invasive procedure, 

complex analysis and 

decoding 

Prosthetic control, 

research 

Various 

(subject-

specific) 

Local Field 

Potentials (LFPs) 

Measurement of 

brain activity at a 

local level. 

Reflect network-

level activity 

Limited spatial 

resolution, signal 

contamination 

Epilepsy 

monitoring, 

research 

Various 

(subject-

specific) 

Rapid Serial 

Visual 

Presentation 

(RSVP) 

Presentation of 

stimuli in rapid 

succession. 

Fast and precise 

communication 

Limited vocabulary 

and communication 

rate 

Spelling devices, 

communication 

Various (task-

dependent) 

Error-Related 

Potentials 

(ErrPs) 

Brain responses to 

errors or 

unexpected events. 

Reflect error 

monitoring and 

feedback 

Low signal-to-noise 

ratio, complex 

detection algorithms 

Error detection, 

adaptive systems 

Various (task-

dependent) 
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Further challenges lie in the limited spatial and temporal resolution of neuroimaging techniques. While EEG 

and MEG boast high temporal resolution, fMRI provides a higher spatial resolution, albeit with a lower temporal 

resolution. The combined use of multiple modalities such as fMRI and EEG can bypass each modality's 

constraints. By exploiting their complementary information, a more precise decoding process is facilitated. 

In addition, multicollinearity and feature selection issues, where brain regions show coupled activity, are 

frequently observed in neuroimaging data. These may compromise the interpretability and performance of 

decoding models. However, regularization methods and dimensionality reduction algorithms have proven 

useful in identifying essential brain areas or characteristics, minimizing the effects of multicollinearity. 

The pursuit of precise decoding across various individuals and tasks presents yet another challenge due to inter-

subject variability and task-specific neural patterns. Here, transfer learning methodologies offer a viable solution 

by capitalizing on knowledge from a particular domain to enhance decoding for new individuals or tasks. 

Furthermore, pretraining on a vast dataset followed by fine-tuning on a smaller, subject-specific dataset has 

shown potential for improving generalization. 

With some decoding techniques, particularly those using deep learning or black-box models, interpretability 

and model transparency become significant concerns. Tools like model interpretability algorithms, saliency 

mapping, and encoding models have been developed to shed light on the features or brain regions responsible 

for decoding, thus improving process interpretability. 

Overfitting, where models become excessively tailored to the training data, is a common problem in decoding. 

Techniques such as nested cross-validation or leave-one-subject-out cross-validation, coupled with 

regularization techniques like L1 or L2 regularization, effectively mitigate overfitting and enhance the model's 

generalization ability. 

Accurately decoding immediate representations of cognitive states is particularly problematic as these are often 

dynamic and continuously changing. To address this, time-resolved decoding techniques, such as sliding 

window analyses or dynamic decoding models, have been utilized for more precise data decoding and capturing 

the temporal dynamics of cognitive processes. 

Smaller sample sizes can limit the generalizability and statistical strength of decoding models. This issue may 

be tackled by collaborative initiatives and data sharing among research organizations, as well as methods such 

as data augmentation, bootstrapping, or creating synthetic data. 

Experimental paradigms often introduce variability in decoding cognitive states, as task parameters, inputs, 

instructions, or task durations may influence brain activity patterns. Standardizing experimental procedures and 

employing clear cognitive tasks across research can enhance comparability and foster robust decoding across 

experiments. 

Decoding unobserved or hidden cognitive states poses another challenge as neuroimaging methods may not 

adequately capture certain cognitive processes. Including behavioral measurements, self-report questionnaires, 

or physiological signals along with neuroimaging data can enhance the accuracy of decoding models. 

Furthermore, ethical considerations and participant privacy must be observed. Researchers need to strike a 

balance between collecting sufficient data, protecting participant privacy, and adhering to ethical procedures. 

Issues also arise from variability across imaging modalities due to variations in data characteristics and 

preprocessing requirements. Effective multimodal fusion algorithms and correction of modal-specific errors and 

biases are required to accurately decode and exploit the advantages of multimodal neuroimaging. 

Real-time decoding of cognitive states presents additional challenges due to the need for swift processing and 

feedback. Enhancing computational methods, reducing latency, and utilizing specialized hardware or parallel 

processing strategies can simplify real-time decoding. 

Finally, reproducibility and open science are crucial for advancing the field of cognitive state decoding. Sharing 

code, data, and analytic pipelines, and maintaining thorough documentation allows for the examination, 

replication, and validation of decoding techniques. Initiatives that encourage open science foster collaboration, 

transparency, and the overall improvement of research coding. 

To overcome these challenges, interdisciplinary collaborations, methodological breakthroughs, and rigorous 

validation of decoding models are essential. The suggested solutions for these issues are presented in Table 4. 

 

 

 

 



PLOMS Review  2021, 01 3 of 21 

 

 

Table 4. Challenges and their potential solutions  

Challenge Potential Solutions 

Noisy and Variable Data 

Preprocessing techniques to reduce noise and enhance data quality 

Collecting larger datasets and data augmentation 

Limited Spatial and Temporal 

Resolution 

Combining multiple modalities to leverage complementary 

information 

Overcoming limitations using hybrid approaches 

Multicollinearity and Feature Selection 

Feature selection techniques to identify informative features 

Dimensionality reduction to address multicollinearity 

Generalization across Individuals and 

Tasks 

Transfer learning to leverage knowledge from one subject or task 

Pretraining and fine-tuning for enhanced generalization 

Interpretability and Model 

Transparency 

Model interpretability algorithms, saliency mapping, or encoding 

models 

Overfitting and Cross-Validation 

Proper cross-validation strategies to assess model performance 

Regularization techniques to prevent overfitting 

Variability in Cognitive States Time-resolved decoding approaches to capture temporal dynamics 

Limited Sample Size 

Collaborative efforts and data sharing 

Data augmentation and synthetic data generation 

Variability in Experimental Paradigms Standardizing experimental protocols and tasks 

Unobserved or Hidden Cognitive States 

Integrating behavioral measures and physiological signals with 

neuroimaging data 

Ethical Considerations and Participant 

Privacy 

Anonymizing and protecting sensitive information 

Ensuring informed consent and data security 

Variability across Imaging Modalities 

Developing effective multimodal fusion techniques 

Addressing modal-specific artifacts and biases 

Real-Time Decoding 

Optimizing computational algorithms and reducing latency 

Utilizing specialized hardware or parallel processing 

Reproducibility and Open Science 

Sharing code, data, and analysis pipelines 

Embracing Open Science Practices 

VI. Conclusions 

This paper has investigated the advanced neuroimaging techniques and the decoding of cognitive states within 

Brain-Computer Interfaces (BCIs), underscoring their significance in enhancing human-computer interaction 

and understanding of cognitive processes. Our exploration reveals the potential of integrating machine learning 

and statistical modeling with neuroimaging to improve BCI accuracy and efficiency. While promising, the 

journey ahead involves addressing technical challenges, refining decoding algorithms, and considering the 

ethical implications of BCIs. Future research should focus on improving neuroimaging resolution, developing 

sophisticated algorithms, and exploring the ethical dimensions of augmented human cognition. Ultimately, this 

work contributes to the broader goal of achieving seamless integration between human cognition and 

technology, promising new avenues for advancements in healthcare, AI, and beyond. 
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