
PLOMS Journal of
Artificial Intelligence
(PLOMS AI)

Review

Survey on Web Application Security Testing Meth-
ods
Amman Alamri1, Hamad Albahri1, and Rabie A. Ramadan1

1Department of Information Systems, College of Economics, Management, and Informa-
tion Systems, University of Nizwa, Nizwa, Sultanate of Oman
*Correspondence: 21339191@uofn.edu.om

Received: January 1st, 2025; Accepted: March 3rd, 2025; Published: May 1st, 2025

Abstract: This research study delivers comprehensive coverage of tools, techniques,
and processes for ensuring security within web applications. The analysis encompasses
both automated and manual approaches, including code reviews, penetration testing, and
tools addressing common vulnerabilities listed in the OWASP Top 10. As web appli-
cations have become critical infrastructure for modern organizations managing sensitive
data and performing significant transactions, the need for robust security testing has
grown exponentially. The research presents case studies and results of testing performed
in real environments to illustrate the strengths and weaknesses of various security testing
methodologies. The findings demonstrate that while automated tools provide efficiency
and scalability, manual testing remains essential for detecting complex logical vulnerabil-
ities and context-sensitive security issues. Additionally, the paper emphasizes the impor-
tance of integrating multiple testing approaches into a unified web application security
strategy to address the evolving threat landscape effectively.

Keywords: Web Application Security; Penetration Testing; OWASP Top 10; Code Re-
view; Security Testing Tools; Burp Suite; OWASP ZAP

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 2 of 15

I. Introduction

The purpose of this paper is to analyze the tools, methodologies, and procedures for eval-
uating the security of web applications that are becoming very critical parts of modern
organizations managing sensitive data and performing significant transactions. Web ap-
plication attacks are rising as applications become increasingly complex, making them
prime targets for malicious actors seeking to exploit vulnerabilities that could facilitate
unauthorized access, data breaches, or system disruption [2]. This justifies the survey
that aims at showing both automated and manual testing methodologies in addressing
this developing concern.

Manual techniques include code reviews and penetration testing which rely on secu-
rity expertise to detect and evaluate vulnerabilities [6]. In turn, automated technologies
provide scalability and efficiency by allowing the quicker identification of general vulner-
abilities over large-scale applications [9]. Additionally, this study reviews some of the
most popular tools for finding threats, such as OWASP ZAP and Burp Suite, which have
become essential instruments in the security tester’s toolkit [18].

The primary focus of the paper will deal with the OWASP Top 10 vulnerabilities that
still pose serious threats to web applications [15]. Major targets for these threats include
SQL injection, cross-site scripting (XSS), and broken authentication, which continue to
plague web applications despite widespread awareness of their existence [1]. The practical
pros and cons of the various methods of remedying such threats are demonstrated using
real-life case studies and security testing reports in this study.

The conclusions want, ultimately, to provide some important insight on the efficiency
of existing security testing methodologies as well as emphasizing the importance of in-
tegrating automated and manual strategies into a more unified web application security
strategy [3]. This integrated approach is essential for organizations seeking to establish
comprehensive security postures in an increasingly hostile digital environment.

II. Security Tests on Web Applications

Security testing processes are critical components in protecting web applications from
vulnerabilities that could lead to confidential information theft or unauthorized systems
access by attackers [12]. These testing methodologies can be broadly categorized into
manual and automated approaches, each with distinct advantages. However, research
indicates that the combination of both methodologies typically yields superior results,
particularly when tailored to the specific security requirements of the application under
test [16]. The focus of these testing efforts is primarily directed toward the most hazardous
threats, which are often outlined in the OWASP Top 10 guidelines [15].

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 3 of 15

II.1 Manual Testing Methods

Manual testing methodologies rely extensively on the expertise and critical thinking abil-
ities of security professionals who possess in-depth knowledge of security threats and
vulnerabilities [9]. These specialists leverage their technical expertise and insight to iden-
tify logical flaws, subtle vulnerabilities, and misconfigurations that automated tools might
overlook due to their inherent limitations in contextual understanding [1].

II.1.1 Penetration Testing

Penetration testing, often abbreviated as "pen testing," involves simulating realistic at-
tacks to identify vulnerabilities in web applications [11]. Cybersecurity professionals me-
thodically attempt to exploit discovered weaknesses and thoroughly document their find-
ings to facilitate remediation efforts. As noted by Chen et al. [7], the primary objective
of penetration testing is to understand and replicate the methodologies that might be
employed by actual cybercriminals attempting to compromise the system.

Penetration testing is particularly effective for identifying complex security issues
such as misconfigurations, chained vulnerabilities, and business logic failures [5]. These
types of vulnerabilities often require solutions that differ significantly from standard ap-
proaches—such as identifying weaknesses in authentication mechanisms or exploiting vul-
nerable API endpoints that might not be detected through conventional automated scan-
ning [10].

II.1.2 Code Review

Code reviewing is a meticulous process that involves the inspection of application source
code to identify security vulnerabilities and weaknesses [14]. Security experts conduct
line-by-line code reviews to identify logical errors, risky coding practices, and potential
security risks such as hard-coded credentials, insufficient input validation, or improper
error handling mechanisms.

This technique has proven particularly effective in identifying subtle vulnerabilities, in-
cluding minor logic errors or security misconfigurations that automated techniques might
fail to detect [3]. To enhance efficiency and coverage, code reviews can be conducted either
manually by experienced security professionals or with the assistance of static analysis
tools that can quickly scan large codebases for common security patterns and anti-patterns
[8].

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 4 of 15

II.2 Automated Testing Methods

Automated testing methods have become essential components of modern web appli-
cation security assessment frameworks due to their ability to rapidly identify common
vulnerabilities across extensive codebases and complex systems [9]. These tools facilitate
faster detection of security vulnerabilities, improve scalability of testing processes, and
significantly reduce the manual effort required for comprehensive security assessments
[16]. However, it’s important to note that automated tools may sometimes fail to iden-
tify complex logic-related issues that typically require manual validation, and they may
occasionally generate false positives that necessitate human verification [10].

II.2.1 Static Application Security Testing (SAST)

Static Application Security Testing (SAST) represents a white-box testing approach that
evaluates the source code, bytecode, or binaries of an application without executing it
[8]. SAST tools are designed to identify potential vulnerabilities during the early stages
of the development lifecycle by analyzing code for security issues such as SQL injection
vulnerabilities, unsafe function calls, and embedded credentials [14].

The primary advantage of SAST is that it allows developers to identify and address
security issues during the coding phase, which substantially reduces the overall cost of re-
mediation compared to addressing vulnerabilities discovered in production environments
[12]. Popular SAST tools include SonarQube, Checkmarx, and Fortify, each offering spe-
cialized capabilities for different programming languages and development environments
[4].

II.2.2 Dynamic Application Security Testing (DAST)

Dynamic Application Security Testing (DAST) is a black-box testing methodology that
identifies vulnerabilities during the execution of an application [10]. These tools interact
with web applications externally, simulating real-time attacks to identify security issues
such as SQL injection, cross-site scripting (XSS), and authentication vulnerabilities [5].

DAST is particularly effective at identifying runtime vulnerabilities that may result
from improper configurations, inadequate input validation, or insecure session manage-
ment practices [1]. Unlike SAST, DAST does not typically require access to the appli-
cation’s source code, making it suitable for testing third-party applications or systems
where source code access is restricted [3]. Widely used DAST tools include Nessus, Burp
Suite, and OWASP ZAP, each offering varying levels of automation and customization
capabilities [18].

It’s worth noting that modern security testing strategies often incorporate both SAST

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 5 of 15

and DAST as complementary approaches, allowing organizations to identify a broader
range of potential vulnerabilities throughout the software development lifecycle [16]. Ad-
ditionally, these tools are increasingly being integrated into continuous integration and
deployment (CI/CD) pipelines to ensure that security testing becomes an integral part of
the development process rather than a separate, isolated activity [7].

II.3 OWASP Top 10 Vulnerabilities

The OWASP Top 10 is a widely recognized framework for identifying and categorizing
the most critical web application security risks [15]. Developed and maintained by the
Open Web Application Security Project (OWASP), this list serves as an essential reference
for developers, security professionals, and organizations seeking to strengthen their web
application security posture. The OWASP Top 10 is regularly updated to reflect evolving
threat landscapes and emerging attack vectors in the web application security domain
[11].

II.3.1 SQL Injection

SQL injection vulnerabilities occur when user-supplied input is inadequately validated
before being incorporated into database queries [13]. This allows attackers to manipu-
late query syntax and execute unauthorized database operations, potentially leading to
unauthorized access, data theft, or data corruption [1]. The prevalence of SQL injection
attacks highlights the critical importance of implementing proper input validation and
parameterized queries in web application development [10].

II.3.2 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) vulnerabilities enable attackers to inject malicious scripts into
web pages that are subsequently viewed by unsuspecting users [21]. These injected scripts
can perform various malicious actions, including session hijacking, credential theft, and
unauthorized actions performed on behalf of the compromised user [3]. The persistent
nature of some XSS vulnerabilities makes them particularly dangerous, as malicious scripts
may remain embedded in web applications, affecting multiple users over extended periods
[5].

II.3.3 Broken Authentication

Broken authentication vulnerabilities arise from flawed implementation of authentication
mechanisms in web applications [15]. Attackers can exploit these weaknesses to capture

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 6 of 15

legitimate user credentials or bypass authentication entirely, potentially gaining unautho-
rized access to sensitive systems or user accounts [16]. Common manifestations of broken
authentication include weak password policies, improper session management, and inse-
cure credential storage practices, all of which can significantly compromise application
security [6].

II.3.4 Sensitive Data Exposure

This vulnerability category encompasses failures to adequately protect sensitive infor-
mation such as financial data, personal identification information, and authentication
credentials during transmission or storage [2]. These vulnerabilities often arise from weak
encryption implementations, improper certificate validation, or inadequate data handling
practices [1]. The growing volume of sensitive data processed by modern web applications
makes addressing these vulnerabilities increasingly critical for maintaining user trust and
regulatory compliance [7].

II.3.5 Insecure Deserialization

Insecure deserialization vulnerabilities arise when applications deserialize untrusted data
without sufficient validation, potentially allowing attackers to execute arbitrary code or
launch denial-of-service attacks [15]. These vulnerabilities are particularly dangerous be-
cause they can lead to complete system compromise in many cases, and they can be
difficult to detect through automated scanning tools [14]. Proper input validation, type
checking, and integrity verification are essential for mitigating these risks in web applica-
tions that process serialized data [5].

III. Tools for Web Application Security Testing

Web application security testing tools play a crucial role in evaluating, identifying, and
mitigating vulnerabilities in web applications that have become essential components of
modern digital infrastructure [18]. These tools enable developers and security profession-
als to identify critical threats such as SQL injection, cross-site scripting (XSS), broken
authentication mechanisms, and various other security weaknesses that could potentially
compromise application integrity and data confidentiality [4]. Among the most widely
adopted security testing platforms, Burp Suite and OWASP ZAP stand out for their
comprehensive capabilities that support both automated scanning and manual security
testing methodologies [10].

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 7 of 15

III.1 Burp Suite

Burp Suite is a comprehensive and widely-used web application security testing platform
developed by PortSwigger [15]. Its versatility, user-friendly interface, and effectiveness in
identifying and exploiting vulnerabilities have made it a preferred tool among security pro-
fessionals, penetration testers, and developers engaged in web application security testing
[11]. The platform offers a sophisticated suite of tools for testing common vulnerabilities,
intercepting network traffic, and analyzing HTTP/HTTPS requests in detail [5].

III.1.1 Key Features

Intercepting Proxy: Burp Suite functions as an intercepting proxy, positioning it-
self between the web browser and the target application. This capability allows security
testers to capture, inspect, and modify HTTP/HTTPS communications in real-time, fa-
cilitating the identification of vulnerabilities such as improper redirections, inadequate
input validation, and authentication flaws [6].

Scanner: The platform includes a powerful vulnerability scanner that automatically
identifies security issues such as cross-site scripting (XSS), SQL injection, and insecure
session management [16]. This functionality enables rapid vulnerability discovery and
provides detailed recommendations for remediation [10].

Intruder: Burp Suite’s Intruder module provides capabilities for parameter manipula-
tion, fuzzing, and brute-force attack simulation [11]. This feature allows security testers
to send multiple payloads to target endpoints to evaluate their resilience against vari-
ous attack vectors, making it particularly valuable for testing authentication systems and
input validation mechanisms [1].

Repeater: The Repeater functionality enables testers to manually craft and resend
HTTP/HTTPS requests to observe application responses and behavior [5]. This capability
is instrumental in understanding application behavior and testing specific parameters for
vulnerabilities [3].

Extensibility: Burp Suite supports extension through plugins and custom scripts, al-
lowing testers to integrate external tools and create specialized testing workflows tailored
to specific application requirements [7]. This extensibility makes Burp Suite adaptable to
various testing scenarios and enhances its utility across different application environments
[18].

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 8 of 15

III.2 OWASP ZAP

The OWASP Zed Attack Proxy (ZAP) is an open-source web application security testing
tool developed and maintained by the Open Web Application Security Project (OWASP)
community [15]. Its user-friendly interface makes it accessible to both novice and ex-
perienced security professionals, while its comprehensive functionality supports various
testing methodologies [2]. As a versatile security testing platform, ZAP can perform both
automated vulnerability scanning and manual testing of web applications [16].

III.2.1 Key Features

Intercepting Proxy: Similar to Burp Suite, ZAP functions as an intercepting proxy
that captures HTTP/HTTPS traffic between the browser and the target application [6].
This functionality allows security testers to analyze and manipulate request and response
messages in real-time, facilitating the identification of potential vulnerabilities [5].

Automated Scanning: ZAP includes an automated scanner that detects common web
application vulnerabilities such as cross-site scripting (XSS), SQL injection, authentica-
tion failures, and security misconfigurations [10]. This feature plays a critical role in
comprehensive web application security assessment by identifying potential entry points
for attackers [11].

Spidering: The spider tool in ZAP automatically crawls through the target web ap-
plication to discover all accessible endpoints and pages [7]. This ensures comprehensive
coverage during security assessments by identifying previously unknown or hidden appli-
cation components [1].

Active and Passive Scanning: ZAP supports both active scanning, which involves
sending test payloads to the application, and passive scanning, which analyzes application
responses without active interaction [5]. This dual approach enables thorough vulnerabil-
ity detection while minimizing potential impact on the target application [14].

Fuzzing: ZAP includes fuzzing capabilities that allow testers to send multiple varied
inputs to specific parameters, facilitating the identification of abnormal behaviors, buffer
overflows, and input validation weaknesses [16]. This functionality is particularly valu-
able for identifying edge cases and unexpected application behaviors that might indicate
security vulnerabilities [18].

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 9 of 15

Extensibility: ZAP supports customization through scripts and extensions, enabling
testers to extend its functionality to address specific testing requirements [4]. The plat-
form supports scripting in various languages, including Python, JavaScript, and Groovy,
allowing for sophisticated automation and customization of testing workflows [3].

IV. Real-World Analysis of Security Testing

Testing web applications for security vulnerabilities is essential for identifying weaknesses
that could potentially be exploited by malicious actors [12]. This section examines the
practical efficacy of various security testing methodologies through case studies, security
reports, and documented test results from real-world implementations [2]. The analysis
demonstrates how both automated tools and manual penetration testing techniques are
utilized to identify and mitigate security risks in web applications, with particular empha-
sis on addressing the OWASP Top 10 vulnerabilities such as SQL injection and cross-site
scripting (XSS) [15].

IV.1 Effectiveness of Penetration Testing

Penetration testing has consistently demonstrated its value as a methodology for iden-
tifying and verifying complex vulnerabilities that might remain undetected through au-
tomated scanning approaches [6]. The contextual understanding and adaptive problem-
solving capabilities of skilled penetration testers enable them to uncover sophisticated
security weaknesses that have eluded traditional security assessment methods [11].

IV.1.1 Case Study: SQL Injection in an Online Store

As part of a comprehensive security assessment, a large e-commerce platform underwent
penetration testing that revealed a critical SQL injection vulnerability in its product
search functionality [1]. The penetration testers demonstrated that this input validation
vulnerability could potentially allow attackers to extract sensitive customer information,
including payment details, from the underlying database [13]. This case illustrates why
manual testing remains essential for identifying vulnerabilities in widely used web appli-
cations, particularly those processing sensitive data [7].

IV.1.2 Case Study: Financial Application with Business Logic Error

Another noteworthy case involved an online banking application where penetration test-
ing uncovered a significant business logic vulnerability that allowed users to circumvent
transaction limits by manipulating request parameters [5]. This type of vulnerability

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 10 of 15

typically evades detection by automated tools because it involves flawed application logic
rather than standard security misconfigurations [10]. The case highlights the importance
of human expertise in penetration testing, as security professionals can understand com-
plex application workflows and identify logical inconsistencies that might be exploited by
attackers [14].

IV.2 Effectiveness of Automated Tools

The implementation of automated security testing tools such as Burp Suite and OWASP
ZAP has significantly enhanced the efficiency and coverage of vulnerability assessments
for web applications [16]. These tools enable standardized testing procedures that can
be consistently applied across different application versions and deployments, facilitating
more comprehensive security monitoring throughout the development lifecycle [18].

IV.2.1 Case Study: Cross-Site Scripting (XSS) Detection in Public Portal

Automated scanning with OWASP ZAP identified multiple reflected cross-site scripting
(XSS) vulnerabilities in a government web portal that accepted public input data [21].
These vulnerabilities could potentially allow attackers to inject malicious scripts that
would execute in users’ browsers, potentially leading to session hijacking or credential
theft [3]. The security team implemented remediation measures efficiently thanks to the
detailed vulnerability reports generated by the automated scanning tool, demonstrating
the value of automation in identifying and addressing common web application security
issues [7].

IV.2.2 Case Study: Credentials Exposure on an Online Store

During an automated security assessment of a major online retailer, scanning tools identi-
fied that sensitive data, including payment card information and user credentials, was be-
ing transmitted without proper encryption [1]. This Sensitive Data Exposure vulnerabil-
ity, which features prominently in the OWASP Top 10 list, was flagged by the automated
tools, leading to recommendations for implementing TLS/SSL encryption for sensitive
endpoints [15]. This case exemplifies how automated tools can efficiently identify con-
figuration weaknesses and data handling issues that might otherwise remain undetected
[12].

IV.3 Comparative Insights: Manual vs. Automated Testing

While manual testing has proven highly effective at identifying sophisticated vulnera-
bilities, practical security testing typically involves a combination of both manual and

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 11 of 15

automated approaches [6]. Manual penetration testing excels at uncovering complex vul-
nerabilities such as chained attack sequences, business logic flaws, and application-specific
weaknesses that might not conform to standard vulnerability patterns [5].

Human testers leverage their knowledge, experience, and intuition to evaluate appli-
cation behavior and identify potential security risks that automated tools might overlook
due to their reliance on predefined vulnerability signatures [10]. Conversely, automated
tools excel at identifying common vulnerabilities across large applications, including SQL
injection, cross-site scripting, and configuration errors, with remarkable efficiency and
consistency [16].

These tools are particularly valuable in continuous integration/continuous deployment
(CI/CD) environments, rapid scanning scenarios, and situations requiring regular reassess-
ment of application security posture [7]. The real-world cases discussed in this section
illustrate the complementary nature of both approaches: while penetration testers provide
depth through detailed analysis of specific application components, automated tools offer
breadth by quickly identifying common vulnerabilities across the application surface [12].

IV.4 Importance of Addressing OWASP Top 10 Vulnerabilities

The vulnerabilities cataloged in the OWASP Top 10 consistently appear in security breach
incidents, highlighting the critical importance of addressing these common security weak-
nesses [15]. Poor programming practices, inadequate security configurations, and insuffi-
cient security testing during development are frequently identified as root causes for these
vulnerabilities [2].

Cross-Site Scripting (XSS) and SQL Injection remain among the most frequently ex-
ploited vulnerabilities in web applications [21][13]. Case studies have repeatedly demon-
strated that insufficient input validation and inadequate data sanitization often create
opportunities for attackers to execute malicious code or gain unauthorized access to sen-
sitive data [1].

Numerous high-profile security incidents have involved compromised user accounts
and massive data breaches resulting from broken authentication mechanisms and sensi-
tive data exposure [6]. By prioritizing the detection and remediation of OWASP Top
10 vulnerabilities, organizations can significantly reduce their security risk profile and
enhance the overall resilience of their web applications against common attack vectors
[12].

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 12 of 15

V. Conclusion

This paper has emphasized the critical importance of web application security testing
in identifying and addressing vulnerabilities that could potentially compromise sensitive
systems and data [2]. Through a comprehensive examination of both manual and auto-
mated security testing methodologies, including code reviews, penetration testing, and
specialized security tools such as OWASP ZAP and Burp Suite, we have demonstrated
the relative strengths and limitations of different approaches to security assessment [6].

The findings from this study strongly suggest that optimal security testing outcomes
are achieved through the integration of multiple complementary methodologies rather
than reliance on any single approach [12]. While automated tools provide efficiency, con-
sistency, and broad coverage, manual testing contributes depth, contextual understanding,
and the ability to identify complex, logic-based vulnerabilities that might elude automated
detection [10].

Moreover, the persistent prevalence of OWASP Top 10 vulnerabilities in produc-
tion web applications underscores the continuing need for comprehensive security testing
throughout the development lifecycle [15]. Future research directions may explore the
application of machine learning and artificial intelligence to enhance vulnerability detec-
tion capabilities, potentially bridging the gap between automated efficiency and human
analytical capabilities [7].

Author Contributions

Conceptualization, A.A., H.A. and R.A.R.; methodology, A.A.; validation, R.A.R.; formal
analysis, H.A.; investigation, A.A. and H.A.; resources, R.A.R.; data curation, A.A.;
writing—original draft preparation, A.A. and H.A.; writing—review and editing, R.A.R.;
visualization, H.A.; supervision, R.A.R.; project administration, A.A. All authors have
read and agreed to the published version of the manuscript.

Funding

The APC was funded by University of Nizwa.

Acknowledgments

The authors thank University of Nizwa for their support.

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 13 of 15

Conflicts of Interest

The authors declare no conflict of interest.

References

References

[1] Akrout, R., Alata, E., Kaaniche, M., Nicomette, V. (2014). An automated black box
approach for web vulnerability identification and attack scenario generation. Journal
of the Brazilian Computer Society, 20(1), 1-16.

[2] Alden, J. (2020). A Survey on Web Application Security. IEEE Security & Privacy,
18(1), 78-82.

[3] Alonso, J. M., Guzman, A., Beltrán, M. (2018). A practical approach for web security
testing. International Journal of Computer Network and Information Security, 10(2),
1-10.

[4] Antunes, N., Vieira, M. (2009). Comparing the effectiveness of penetration testing
and static code analysis on the detection of SQL injection vulnerabilities in web
services. In 2009 15th IEEE Pacific Rim International Symposium on Dependable
Computing (pp. 301-306).

[5] Bau, J., Bursztein, E., Gupta, D., Mitchell, J. (2010). State of the art: Automated
black-box web application vulnerability testing. In 2010 IEEE Symposium on Security
and Privacy (pp. 332-345).

[6] Bertoglio, D. D., Zorzo, A. F. (2017). Overview and open issues on penetration test.
Journal of the Brazilian Computer Society, 23(1), 1-16.

[7] Chen, J., Kudjo, P. K., Mensah, S., Amankwah, R., Towey, D. (2018). An empirical
comparison of commercial and open-source web vulnerability scanners. In 2018 IEEE
42nd Annual Computer Software and Applications Conference (pp. 192-201).

[8] Chess, B., McGraw, G. (2007). Secure programming with static analysis. Pearson
Education.

[9] Deepa, G., Thilagam, P. S. (2014). A research study on web application security.
In 2014 International Conference on Advances in Computing, Communications and
Informatics (pp. 1016-1022).

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 14 of 15

[10] Doupé, A., Cova, M., Vigna, G. (2010). Why Johnny can’t pentest: An analysis
of black-box web vulnerability scanners. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (pp. 111-131). Springer.

[11] Engebretson, P. (2013). The basics of hacking and penetration testing: ethical hack-
ing and penetration testing made easy. Elsevier.

[12] Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R., Pretschner, A.
(2016). Security testing: A survey. Advances in Computers, 101, 1-51.

[13] Halfond, W. G., Viegas, J., Orso, A. (2006). A classification of SQL-injection attacks
and countermeasures. In Proceedings of the IEEE International Symposium on Secure
Software Engineering (Vol. 1, pp. 13-15).

[14] McCormac, A., Zwaans, T., Parsons, K., Calic, D., Butavicius, M., Pattinson, M.
(2016). Security awareness and training programs in organizations: A review of their
effectiveness. In International Conference on Human Aspects of Information Security,
Privacy, and Trust (pp. 71-82). Springer.

[15] OWASP. (2021). OWASP Top Ten Web Application Security Risks. Retrieved from
https://owasp.org/www-project-top-ten/

[16] Sagar, R., Singh, D., Kumar, V. (2017). A survey on web application security:
Attacks and prevention. In 2017 International Conference on Innovations in Informa-
tion, Embedded and Communication Systems (ICIIECS) (pp. 1-7).

[17] Sampaio, L. M., Silva, J. C. M. (2008). A survey of web application security testing
tools. In Brazilian Symposium on Computer Networks (SBRC) (pp. 217-230).

[18] Shinde, P., Ardhapurkar, S. (2018). Application of security scanners for web vulner-
abilities identification. In 2018 International Conference on Current Trends towards
Converging Technologies (ICCTCT) (pp. 1-6).

[19] Stuttard, D., Pinto, M. (2011). The Web Application Hacker’s Handbook: Finding
and Exploiting Security Flaws. John Wiley Sons.

[20] Stuttard, D., Pinto, M. (2017). The Web Application Hacker’s Handbook: Finding
and Exploiting Security Flaws (2nd Edition). John Wiley Sons.

[21] Wassermann, G., Su, Z. (2008). Static detection of cross-site scripting vulnerabilities.
In Proceedings of the 30th international conference on Software engineering (pp. 171-
180).

[22] Howard, M., Lipner, S. (2001). The Security Development Lifecycle. IEEE Software,
18(4), 13-17.

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index


PLOMS AI 2025, 01 15 of 15

[23] Muzaki, F., Fauzan, A., Hariyono, B. (2018). Web application firewall using mod
security and Reverse proxy. In 2018 International Conference on Applied Information
Technology and Innovation (pp. 105-109). IEEE.

https://plomscience.com/journals/index.php/PLOMSAI/index

https://plomscience.com/journals/index.php/PLOMSAI/index

	Introduction
	Security Tests on Web Applications
	Manual Testing Methods
	Penetration Testing
	Code Review

	Automated Testing Methods
	Static Application Security Testing (SAST)
	Dynamic Application Security Testing (DAST)

	OWASP Top 10 Vulnerabilities
	SQL Injection
	Cross-Site Scripting (XSS)
	Broken Authentication
	Sensitive Data Exposure
	Insecure Deserialization


	Tools for Web Application Security Testing
	Burp Suite
	Key Features

	OWASP ZAP
	Key Features


	Real-World Analysis of Security Testing
	Effectiveness of Penetration Testing
	Case Study: SQL Injection in an Online Store
	Case Study: Financial Application with Business Logic Error

	Effectiveness of Automated Tools
	Case Study: Cross-Site Scripting (XSS) Detection in Public Portal
	Case Study: Credentials Exposure on an Online Store

	Comparative Insights: Manual vs. Automated Testing
	Importance of Addressing OWASP Top 10 Vulnerabilities

	Conclusion

