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Abstract: Crowd abnormal events detection in surveillance videos is a common topic in computer vision. For 

better security and safety, automatic video surveillance systems can detect and record abnormal activities at 

public and private places. However, traditional methods based on optical flow or segmentation cannot show 

good detection performance. On the other hand, deep learning based solutions for crowd unusual events 

detection showed better performance than those of conventional machine learning. This paper includes the latest 

deep learning models for crowd abnormal events detection in surveillance videos and their overall performance 

study. 
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I. Introduction 

The detection of both abnormal (e.g., [1]–[11] ) and normal (e.g., [12]–[14]) video events is one of the main targets 

of a surveillance camera system. Surveillance systems can detect and track objects using either laser scanned 

data points [15]–[20] or videos [21]–[24]. Automatic video surveillance systems are highly expected, as we do 

not need to manually monitor the abnormal crowd events. Nowadays, approaches of deep learning achieved far 

significant advances than those of traditional for detecting crowd abnormal activities using videos from 

surveillance systems. Deep learning approaches work on multiple layers of artificial neural network to empower 

machines for making decisions. Although detection of abnormal activities of crowd in real-world surveillance 

videos is very important, it is a challenging task as the prior knowledge about the anomalies is normally 

extremely limited. Besides, there is no common explanation for abnormal events and it is commonly depended 

on the scene under consideration. To take these challenges, a great number of deep learning based approaches 

were proposed in the literature during last decade. Accordingly, many surveys have already been conducted on 

the basis of those methods. For examples, Afiq et al. [25] performed a review on classifying abnormal behavior 

in crowd scene; Khan et al. [26] demonstrated the seminal research works on crowd management; Suarez et al. 

[27] presented a survey of deep learning solutions for anomaly detection in surveillance videos; and Braham et 

al. [28] did a comparative study for crowd event analysis.  

 

However, there is a lack of study with the most recent approaches in those surveys. This study aims to give an 

extra insight of the most recent deep learning based crowd anomaly detection methods. 

 

The rest of this study follows as: Section II briefs several crowd datasets; Section III bespeaks on various crowd 

anomaly detection methods; Section IV hints key research challenge; and Section V concludes the paper. 

 

II. Most Common Crowd Datasets 

There exist various crowd datasets to detect abnormal activities from videos, among them most famous datasets 

are UCSD (University of California San Diego) [29], UMN [30], Subway [31], ImageNet [32], CUHK (Chinese 

University of Hong Kong) Campus Avenue [33], ShanghaiTech Campus [34], and UCF-Crime [35]. 

 

• The UCSD dataset was recorded from a stationary camera. This dataset is divided into 2 subsets called 

Pedestrian 1 (Ped1) and Pedestrian 2 (Ped2). In Ped1, there exists an acute angle between the camera 
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view and sidewalk, and the camera height is lower than that in Ped2 [36]. Abnormal activities are 

bikers, skaters, carts, wheelchairs, and people walking off the pedestrian ways. 

 

• The UMN dataset is one of the crowd abnormal activity testing datasets from the University of 

Minnesota. It is a synthetic dataset [37]. The aim of this dataset is to correctly detect the change in the 

movement of the crowd. In each video, motion pattern is completely unstructured [38]. An anomaly is 

indicated if everyone starts running instantaneously. 

 

• Subway dataset was obtained by two cameras in an underground train station. This dataset has two 

long videos for subway-entrance and subway-exit scenes. Both videos are annotated at frame-level and 

have similar types of anomalies, which are wrong direction walking, loitering, and avoiding payment 

[33]. 

 

• ImageNet dataset consists of over 15 million labeled highresolution images belonging to approximately 

22000 categories with variable-resolution. The images were collected from the online and labeled by 

human labelers using Amazon’s Mechanical Turk crowd-sourcing tool. 

 

• CUHK-Avenue dataset was recorded at CUHK Campus Avenue. The 16 training videos capture 

normal cases, whereas 21 testing videos include both normal events and abnormal cases marked in 

rectangles. The abnormal events are running, walking in opposite directions, throwing objects, and 

loitering [39]. 

 

• ShanghaiTech Campus dataset was collected from ShanghaiTech University campus considering 13 

different scenes with various lighting conditions and camera angles. This dataset has 130 abnormal 

events in 13 scenes [40]. It is one of the massive and most challenging datasets available for anomaly 

detection in videos [41]. 

 

• UCF-Crime dataset consists of 1900 long and untrimmed real-world surveillance videos. Unusual 

activities are abuse, arrest, arson, assault, road accident, burglary, explosion, fighting, robbery, 

shooting, stealing, shoplifting, and vandalism [42]. 

 

III. Methods of Abnormal Video Event Detection 

Abnormality detection is commonly termed as an outlier detection problem. The methods of crowd abnormal 

events can be divided into two primary groups namely traditional and deep learning as shown in Fig. 1.  

 

Figure 1. Classification of abnormal video event detection methods. 

A. Traditional Methods  

Traditional methods usually use optical flow and/or segmentation based techniques.  
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1. Optical flow based methods 

A lot of crowd abnormal activity detection methods are based on optical flow technique. For example, 

Ihaddadene et al. [1] presented a tool that automatically detected abnormal situations in crowded 

scenes in real time. Their approach analyzed the general motion aspect, instead of tracking subjects 

one by one, by detecting abnormal optical flow patterns of tracked KLT points. Mehran et al. [6] 

introduced a method for detecting and localizing abnormal behaviors in crowd videos using Social 

Force model. They used a grid of particles, which was placed over the image and it was advected 

with the space-time average of optical flow. Sharif et al. [43] suggested an approach to detect an 

abnormal situation in a crowd scene. Their approach estimated sudden changes and abnormal 

motion variations in a set of interest points. The number of tracked points of interest was reduced by 

using a mask that corresponds to the hot areas of the built motion heat map. Optical flow technique 

tracked the points of interest. There were sufficient variations in the optical flow patterns in a crowd 

scene in case of abnormal situations. 

 

2. Segmentation based methods 

Optical flow can be unreliable and global comparisons of optical flow can lead to erroneous results. 

When optical flow representations are not powerful enough to detect anomalous occurrences, 

segmentation based methods can be used. For example, Mahadevan et al. [44] considered three 

properties for the design of a localized video representation suitable for anomaly detection in such 

scenes: (1) joint modeling of appearance and dynamics of the scene, and the abilities to detect, (2) 

temporal, and (3) spatial abnormalities. Their model for normal crowd behavior was based on 

mixtures of dynamic textures and outliers under their model were labeled as anomalies. 

 

B. Deep Learning Based Methods  

There exist various kinds of deep learning based methods used in crowd abnormality detection. 

1. CNN-based Methods 

CNN was coined by Yann LeCun in the 1980s. Nowadays, a CNN is a very popular model in 

computer vision. It is chiefly consisted of convolution layers, activation function, pooling layers, and 

fully connected layers. There are two well-known options in CNN during training images. First 

option is to train the domain specific problem statement from the scratch. The second option is to use 

pre-trained model, which is usually called the transfer learning [45]. Hyperparameters of CNN are 

variables including the number of hidden layers, the learning rate, the batch size or the number of 

epochs. To select a suitable CNN model is important in the trained model [46]. Adam optimizer [47] 

is frequently used for CNN. Fine-tuning takes a pre-trained model for a fixed task and then tweaking 

it to make it performing another similar job. For example, Singh et al. [48] utilized an ensemble of 

different fine-tuned CNNs based on the hypothesis that dissimilar CNN models learn many levels of 

semantic. Zahid et al. [49] utilised videos into 60 frame-clips to localize abnormality considering 

Inception-v3 [50] along with a pretrained feature extractor of 3DCNN [51]. Hu et al. [52] applied a 

pre-trained 3D VGGNet16 [53] model to detect and localize abnormality from crowd scenes. Hao et 

al. [36] used 3D ResNet [54] to detect crowd video abnormal activities. 

 

2. LSTM-based Methods 

An LSTM keeps unique units called memory blocks in the recurrent hidden layer. Each memory block 

in the original architecture contained an input gate and an output gate. The input gate manages the 

flow of input activations into the memory cell. The output gate supervises the output flow of cell 

activations into the rest of the network. However, the forget gate was attached to the memory block 

[55]. LSTM can be more suitable for temporal information modeling. For example, Xia et al. [56] used 

LSTM [57] to decode the historical feature sequences with temporal attention for predicting the 
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features. Moustafa et al. [58] utilized a LSTM based approach for pathway and crowd anomaly 

detection, where crowd scene was divided into a number of static overlapped spatial regions. 

 

3. Auto-Encoder-based Methods 

Auto-Encoder is used to learn efficient codings of unlabeled data in deep models for transfer learning. 

It consists of two main parts called an encoder and a decoder. The encoder depicts the input into the 

code, whereas the decoder uses the code to a demonstrate of the input. For unsupervised anomaly 

detection cases, the auto-Encoder was trained on normal activities by reducing their reconstruction 

error [59], and then, the thresholded reconstruction error was applied for recognizing anomalies. The 

reconstruction error can be low for the normal activities, but the reconstruction error becomes high 

for the abnormal activities [60], [61]. Auto-Encoder can be used in 2D or 3D applications [60], [62], 

[63].  

 

4. GAN-based Methods 

The GAN [64] contains two adversaries named Generator and Discriminator. The generator considers 

noise as input and generates samples. The discriminator gets samples from the generator as well as 

training data. It should differentiate two data source. In the training phase, the generator learns to 

produce a sample that is close to its ground truth. The discriminator learns how to distinguish the 

generated data from its ground truth. Usually, GAN models are popular for image generation and 

video prediction, more specifically in anomaly detection [65]. Wang et al. [66] used the generation 

error of a generative neural network to detect anomalies. Chen et al. [67] utilized an end-to-end 

pipeline named noisemodulated GAN for video anomaly detection. Tang et al. [68] used the 

PatchGAN discriminator [69] to predict the broad locations of abnormal events. Zhong et al. [70] used 

a kind of P-GAN [71] for anomaly detection in videos. 

 

5. U-Net-based Methods 

A U-Net is a U-shaped model transformed from a fully convolutional network [72]. Ronneberger et 

al. [73] introduced the first classical U-Net for biomedical image segmentation. U-Net has a great role 

in frame prediction. The consecutive frames of one clip of surveillance video normally have the same 

background and the similar foreground [74]. Park et al. [75] used a U-Net [73] to skip connections 

between the encoder and the decoder boost generation ability by preventing gradient vanishing and 

achieving information symmetry. Chen et al. [74] applied a U-Net [73] based bidirectional prediction 

model for anomaly detection. 

 

6. YOLO-based Methods 

The YOLO (You Only Look Once) [76] is a pre-trained object detection tool [77]. It can process many 

frames per second on a GPU. It can provide the same or even better accuracy as compared to ResNet 

[78]. YOLO has several versions. YOLOv3 [79] detector was applied to extract patches from current-

frame. Shine et al. [80] selected anomaly candidates by analyzing 14 background frames per video 

using YOLOv3 detector [79]. Doshi et al. [81] got bounding box (location) and the class probabilities 

(appearance) for each object detected in a given frame using YOLOv4 [76].  

 

7. Attention-based Methods 

Attention mechanism can rapidly extract key features from small amounts of data [82]. Attention-

based model helps to perform the neural network dynamically shift so that the overall decision 

making can be more reliable [83]. Recently, attention-based methods are applied in many computer 

vision based applications for image segmentation [84] and classification [85]. Zhou et al. [83] 

proposed an attention map by putting together mask map and background for anomaly detection in 

video surveillance.  
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8. Transformer-based Methods 

Vaswani et al. [86] used transformer-based method to solve sequence-to-sequence tasks. Feng et al. 

[87] demonstrated a convolutional transformer for predicting future frame based on past frames in 

video anomaly detection. Yuan et al. [88] used the video vision transformer [89] for video prediction. 

 

Table 1. Summary of deep learning based crowd abnormality detection methods. 

Reference Method Dataset Mean ACC Mean AUC 

Singh [48] CNN-based UCSD [29], CUHK 

Avenue [33] 

92.7% 0.923 

Zahid et al. [49 CNN-based UCSD [29], CUHK 

Avenue [33], 

ShanghaiTech 

Campus [34] 

— 0.765 

Hu et al. [52] CNN-based UCSD [29], UMN [30] — 0.965 

Hao et al. [36] CNN-based UCSD [29], CUHK 

Avenue [33], 

ShanghaiTech 

Campus [34] 

— 0.850 

Xia et al. [56] LSTM-based UCSD Ped2 [29], 

CUHK-Avenue [33] 

— 0.911 

Moustafa et al. [58] LSTM-based UMN [30] — 0.965 

Shi et al. [59] Auto-Encoder-based 6000 trajectories 90% — 

Asad et al. [63] Auto-Encoder-based UCSD [29], CUHK 

Avenue [33], etc. 

— 0.888 

Yang et al. [62] Auto-Encoder-based UCSD [29], CUHK-

Avenue [33], etc. 

— 0.912 

Wang et al. [66] GAN-based UCSD [29], CUHK-

Avenue [33] 

— 0.919 

Chen et al. [67] GAN-based UCSD [29], CUHK-

Avenue [33] 

— 0.891 

Tang et al. [68] GAN-based UCSD [29], CUHK 

Avenue [33], 

ShanghaiTech 

Campus [34] 

— 0.835 

Zhong et al. [70 GAN-based UCSD [29], CUHK 

Avenue [33], 

ShanghaiTech 

Campus [34] 

— 0.849 

Park et al. [75] U-Net-based UCSD Ped2 [29], 

CUHK Avenue [33], 

ShanghaiTech 

Campus [34] 

— 0.840 

Chen et al. [74] U-Net-based UCSD [29], CUHK 

Avenue [33] 

— 0.904 

Doshi et al. [81] YOLO-based UCSD Ped2 [29], 

CUHK Avenue [33], 

ShanghaiTech 

Campus [34], etc. 

— 0.780 

Zhou et al. [83] Attention-based UCSD [29], CUHK-

Avenue [33] 

— 0.887 

Feng et al. [87] Transformer-based UCSD Ped2 [29], 

CUHK Avenue [33], 

ShanghaiTech 

Campus [34] 

— 0.869 

Yuan et al. [88] Transformer-based 

UCSD [29] 

CUHK-Avenue [33] — 0.900 

 

Table 1 makes a short description of the deep learning based crowd abnormality detection methods, 

where ACC and AUC represent accuracy and area under the receiver operating characteristic curve, 
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respectively. CNN-based models are relatively easy to realize and quick to implement, while 

Transformer-based models are new for crowd abnormality detection. Based on the datasets and 

training conditions, the performance scores of ACC and AUC might be varied. As a result, specially 

the mean AUC scores of the models in Table 1 are accepted for many applications of computer vision 

and pattern recognition.  

 

IV. Existing Open Challenges 

Although deep learning based solutions for crowd abnormal activity detection showed significantly better than 

traditional solutions, various challenges exist as a huddle in this research area. Some common challenges are 

discussed below. 

• Definition of crowd abnormal event: The definition of abnormal event is totally subjective. Based on the 

time and place, the same event can be normal or abnormal. This is one of the severe challenges for 

crowd abnormal activity detection. 

• Less number of datasets: Deep learning methods need a lot training data, but the existing datasets are not 

enough to do accurate training or testing. 

• Lack of computing power: Crowd abnormal activity detection methods need to process huge amount of 

video data, but the accessible GPU processing is generally less. 

• Low quality of videos: Because of the long distance of cameras, the produced videos of political rally, 

religious events, and airport arrival are small and hence the quality of video is sometimes very poor. 

• Short video segments: There is a common assumption that each test video segment consists of an 

abnormal activity. For this assumption, the length of the video segments should be as long as possible. 

But the video segments of many existing benchmark datasets are a few minutes long only. 

V. Conclusions 

This paper discussed the most advanced deep learning models for crowd abnormal events detection in 

surveillance videos. The performance of models was studied. No single model achieved absolute performance 

due to many dimensional challenges. Common challenges were highlighted. 
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