Article

Oscillation of third order damped nonlinear differential equation

Elmetwally M. Elabbasy
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
emelabbasy@mans.edu.eg
Bassant M. El-Matary *
Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah, Saudi Arabia.
Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt. bassantmarof@yahoo.com

Abstract

The purpose of this paper is to give oscillation criteria for the third order nonlinear differential equation with daming term $$
\left[a_{2}(t)\left\{\left(a_{1}(t) x^{\prime}(t)^{\prime}\right\}\right]^{\prime}+p(t) x^{\prime}(t)+\sum_{i=1}^{n} q_{i}(t) f\left(x\left(g_{i}(t)\right)\right)=0\right.
$$ by using Riccati trasformatiom teqnique and comparison with first order differential equation whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

Keywords: Oscillation; third order; differential equations

1. Introduction

In this paper, we are concerned with the oscillation of third order nonlinear differential equation with damping term

$$
\begin{equation*}
\left[a_{2}(t)\left\{\left(a_{1}(t) x^{\prime}(t)^{\prime}\right\}\right]^{\prime}+p(t) x^{\prime}(t)+\sum_{i=1}^{n} q_{i}(t) f\left(x\left(g_{i}(t)\right)\right)=0\right. \tag{1}
\end{equation*}
$$

where the following conditions are satisfied
(A1) $a_{1}(t), a_{2}(t) p(t)$ and $q(t) \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right)$;
(A2) $f \in C(\mathbb{R}, \mathbb{R})$ such that $x f(x)>0, f^{\prime}(x)>0$ for all $x \neq 0$ and $-f(-x y) \geq f(x y) \geq f(x) f(y)$ for $x y>0$;
(A3) $g(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ for $t \in\left[t_{0}, \infty\right)$ and $\lim _{t \rightarrow \infty} g(t)=\infty$.
We mean by a solution of equation (1) a function $x(t):\left[t_{x}, \infty\right) \rightarrow \mathbb{R}, t_{x} \geq t_{0}$ such that $x(t), a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}, a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}$ are continuously differentiable for all $t \in\left[t_{x}, \infty\right)$ and satisfies (1) for all $t \in\left[t_{x}, \infty\right)$ and satisfy $\sup \{|x(t)|: t \geq T\}>0$ for any $T \geq t_{x}$. A solution of equation (1) is called oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory. In the sequel it will be always assumed that equation (1) has nontrivial solutions which exist for all
$t_{0} \geq 0$. Equation (1) is called oscillatory if all solutions are oscillatory. In fact, Tiryaki and Aktas [20] studied the oscillation of third order nonlinear differential equation with damping term of the form

$$
\begin{equation*}
\left(a_{2}(t)\left[a_{1}(t) x^{\prime}(t)\right]^{\prime}\right)^{\prime}+p(t) x^{\prime}(t)+q(t) f(x(g(t)))=0 \tag{2}
\end{equation*}
$$

under the condition $g(t) \leq t$. Aktas et al [6,7] established some sufficient conditions for the third order nonlinear differential equations with damping term

$$
\left(a_{2}(t)\left[a_{1}(t) x^{\prime}(t)\right]^{\prime}\right)^{\prime}+p(t) x^{\prime}(t)+q(t) f(x(t))=0
$$

and (2) without the condition $g(t) \leq t$. A number of sufficient conditions for oscillation were obtained , for $k=1,2$

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{k}^{-1}(t) d t=\infty \tag{3}
\end{equation*}
$$

Therefore it will be great interest to estabilsh oscillation criteria for equation (1) for both of the cases (3) and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{k}^{-1}(t) d t<\infty \tag{4}
\end{equation*}
$$

By using Riccati transformation technique and a comparison with some first order differential equation whose oscillatory characters are known. Our results will improve and extend results in [7,20] and many known results.

2. Main Results

Before stating our main results, we start with the following lemmas which will play an important role in the proofs of our main results. We let,

$$
\begin{aligned}
& \delta\left(t, t_{0}\right):=\int_{t_{0}}^{t} a_{1}^{-1}(v) d v, \delta_{k}(t):=\int_{t}^{\infty} a_{k}^{-1}(v) d v, k=1,2 \\
& \beta\left(t, t_{0}\right):=\int_{t_{0}}^{t} a_{2}^{-1}(s) d s, g(t):=\min \left(g_{1}(t), g_{2}(t), \ldots, g_{n}(t)\right)
\end{aligned}
$$

Lemma 1. Suppose that

$$
\begin{equation*}
\left[a_{2}(t)\left(z^{\prime}(t)\right)\right]^{\prime}+\frac{p(t)}{a_{1}(t)} z(t)=0 \tag{5}
\end{equation*}
$$

is nonoscillatory. If x is a nonoscillatory solution of (1) on $[T, \infty), T \geq t_{0}$, then there exists a $t_{0} \in[T, \infty)$ such that either $x(t) x^{\prime}(t)>0$ or $x(t) x^{\prime}(t)<0$ for $t \geq t_{0}$.

Proof. Suppose that equation (1) has a nonoscillatory solution x on $\left[t_{0}, \infty\right)$. Then, without loss of generality, there is a $t_{1} \in\left[t_{0}, \infty\right)$, sufficiently large such that $x(t)>0$ and $x(g(t))>0$ on $\left[t_{1}, \infty\right)$. Clearly, $y(t):=-a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}$ is a solution of the second order nonhomogeneous differential equation

$$
\begin{equation*}
\left[a_{2}(t)\left(y^{\prime}(t)\right)\right]^{\prime}+\frac{p(t)}{a_{1}(t)} y(t)=\sum_{i=1}^{n} q_{i}(t) f\left(x\left(g_{i}(t)\right)\right) \tag{6}
\end{equation*}
$$

We claim that the solution (6) are nonoscillatory. Suppose not, let y is oscillatory solution (6) with consecutive zeros at b and $c\left(t_{1}<b<c\right)$ such that $y^{\prime}(b) \geq 0$ and $y^{\prime}(c) \leq 0$. Let z be a solution of (5). Multiply (6) by $z(t)$ and using (5), we obtain

$$
z(t)\left[a_{2}(t)\left(y^{\prime}(t)\right)\right]^{\prime}-\left[a_{2}(t)\left(z^{\prime}(t)\right)\right]^{\prime} y(t)=\sum_{i=1}^{n} z(t) q_{i}(t) f\left(x\left(g_{i}(t)\right)\right)
$$

It can be written as follows

$$
\left(a_{2}(t) z(t) y^{\prime}(t)-a_{2}(t) z^{\prime}(t) y(t)\right)^{\prime}=\sum_{i=1}^{n} z(t) q_{i}(t) f\left(x\left(g_{i}(t)\right)\right)
$$

Integrating the above inequality from b to c, we get a contradiction. The proof is complete.
Lemma 2. Assume that
(H1) Either

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{2}^{-1}(t) d t=\infty \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(a_{2}^{-1}(s)\left(\sum_{i=1}^{n} \int_{t_{0}}^{s}\left(q_{*}(r)+p_{*}(r)\right) d r\right)\right) d s=\infty \tag{8}
\end{equation*}
$$

where

$$
q_{*}(t):=q_{i}(t) f\left(\delta_{2}(g(t))\right) f\left(\delta\left(g(t), t_{2}\right)\right)
$$

and

$$
p_{*}(t):=p(t) \delta_{2}(t) a_{1}^{-1}(t),
$$

hold for $g(t) \geq T$. Let $x(t)$ be an eventually positive solution of the equation (1) such that $x^{\prime}(t)>0$. Then there exists a $T \geq t_{0}$ such that

$$
\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}>0 \text { and }\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime}<0 .
$$

Proof. Pick $t_{1} \geq t_{0}$ such that $x(g(t))>0$, for $t \geq t_{1}$. Since $x(t)$ is an eventually positive solution of the equation (1) such that $x^{\prime}(t)>0$ for all $t \in\left[t_{0}, \infty\right)$. From equation (1), (A1) and (A3), we have

$$
\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime}<0,
$$

for all $t \geq t_{1}$. Then $a_{2}(t)\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}$ is strictly decreasing on $\left[t_{1}, \infty\right)$, so either $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}>0$ or $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}<0$. We claim that $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}>0$ on $\left[t_{1}, \infty\right)$. If not, then, we have, $a_{1}(t)\left(x^{\prime}(t)\right)$ is strictly decreasing on $\left[t_{2}, \infty\right)$ and there exists a negative constant M such that

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}<M \text { for all } t \geq t_{2}
$$

Dividing by $a_{2}(t)$ and integrating from t_{2} to t

$$
a_{1}(t)\left(x^{\prime}(t)\right) \leq a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)+M^{\frac{1}{\alpha_{2}}} \int_{t_{2}}^{t} a_{2}^{-1}(s) d s
$$

Letting $t \rightarrow \infty$, and using (7) then $a_{1}(t)\left(x^{\prime}(t)\right) \rightarrow-\infty$, which contradicts that $x^{\prime}(t)>0$. Otherwise, if (8) is satisfied, we have

$$
\begin{aligned}
x(t)-x\left(t_{3}\right) & =\int_{t_{3}}^{t} x^{\prime}(u) d u \\
& =\int_{t_{3}}^{t} a_{1}^{-1}(u)\left(a_{1}(u)\left(x^{\prime}(u)\right)\right) d u \\
& \geq\left(a_{1}(t)\left(x^{\prime}(t)\right)\right) \int_{t_{3}}^{t} a_{1}^{-1}(u) d u, \quad \text { for } t \geq t_{3}
\end{aligned}
$$

and hence

$$
x(t) \geq\left(a_{1}(t)\left(x^{\prime}(t)\right)\right) \int_{t_{3}}^{t} a_{1}^{-1}(u) d u \quad \text { for } t \geq t_{3}
$$

There exists a $t_{4} \geq t_{3}$ with $g(t) \geq t_{3}$ for all $t \geq t_{4}$ such that

$$
x(g(t)) \geq y(g(t)) \delta\left(g(t), t_{3}\right) \quad \text { for } t \geq t_{4} .
$$

where $y(t):=a_{1}(t)\left(x^{\prime}(t)\right)$. It is clear that $y(t)>0$ and $y^{\prime}(t)<0$. It follows that

$$
-a_{2}(t)\left(y^{\prime}(t)\right) \geq-a_{2}\left(t_{4}\right)\left(y^{\prime}\left(t_{4}\right)\right) \text { for } t \geq t_{4}
$$

thus

$$
-y^{\prime}(t) \geq-\frac{a_{2}\left(t_{4}\right) y^{\prime}\left(t_{4}\right)}{a_{2}(t)} \quad \text { for } \quad t \geq t_{4}
$$

Integrate the above inequality from t to ∞, we get

$$
y(t) \geq-a_{2}\left(t_{4}\right) y^{\prime}\left(t_{4}\right) \delta_{2}(t)
$$

then,

$$
\begin{equation*}
y(t) \geq k_{1} \delta_{2}(t), \quad \text { for } \quad t \geq t_{4} \tag{9}
\end{equation*}
$$

where $k_{1}:=-a_{2}\left(t_{4}\right) y^{\prime}\left(t_{4}\right)>0$. There exists a $t_{5} \geq t_{4}$ with $g(t) \geq t_{4}$ for all $t \geq t_{5}$ such that

$$
\begin{equation*}
y(g(t)) \geq k_{1} \delta_{2}(g(t)) \quad \text { for all } \quad t \geq t_{5} \tag{10}
\end{equation*}
$$

The inequality (9) yields

$$
a_{1}(t)\left(x^{\prime}(t)\right) \geq k_{1} \delta_{2}(t)
$$

that is

$$
x^{\prime}(t) \geq\left(k_{1} \delta_{2}(t)\right) a_{1}^{-1}(t)
$$

From Eq.(1), (10), (A2) and the above inequality, we get, for $t \geq t_{4}$,

$$
\begin{align*}
0= & \left(a_{2}(t)\left(y^{\prime}(t)\right)\right)^{\prime}+p(t) x^{\prime}(t)+\sum_{i=1}^{n} q_{i}(t) f\left(x\left(g_{i}(t)\right)\right) \\
\geq & \left(a_{2}(t)\left(y^{\prime}(t)\right)\right)^{\prime}+p(t) x^{\prime}(t)+f(x(g(t))) \sum_{i=1}^{n} q_{i}(t) \\
\geq & \left(a_{2}(t)\left(y^{\prime}(t)\right)\right)^{\prime}+p(t)\left(k_{1} \delta_{2}(t)\right) a_{1}^{-1}(t) \\
& +f(y(g(t))) f\left(\delta\left(g(t), t_{3}\right)\right) \sum_{i=1}^{n} q_{i}(t) \tag{11}
\end{align*}
$$

By integrating the above inequality from t_{5} to t, we get

$$
\begin{aligned}
& \left.\sum_{i=1}^{n} \int_{t_{5}}^{t}\left[q_{i}(r) f\left(k_{1} \delta_{2}(g(r))\right) f\left(\delta\left(g(r), t_{3}\right)\right)\right)+p(r)\left(k_{1} \delta_{2}(r)\right) a_{1}^{-1}(r)\right] d r \\
\leq & a_{2}\left(t_{5}\right)\left(y^{\prime}\left(t_{5}\right)\right)-a_{2}(t)\left(y^{\prime}(t)\right),
\end{aligned}
$$

Using (A2), we obtain

$$
\begin{aligned}
& a_{2}^{-1}(t)\left(\sum_{i=1}^{n} \int_{t_{5}}^{t}\left[b q_{*}(r)+k_{1} p_{*}(r)\right] d r\right) \\
\leq & -y^{\prime}(t)
\end{aligned}
$$

where $b:=f\left(k_{1}\right)$. Integrating the above inequality from t_{5} to ∞, we get

$$
\begin{aligned}
& \int_{t_{5}}^{\infty}\left(a_{2}^{-1}(s)\left[\sum_{i=1}^{n} \int_{t_{5}}^{s}\left(b q_{*}(r)+k_{1} p_{*}(r)\right) d r\right]\right) d s \\
\leq & y\left(t_{5}\right)<\infty
\end{aligned}
$$

which contradicts the condition (8). The proof is complete.
Lemma 3. Assume that $p^{\prime}(t) \leq 0$ hold. Let $x(t)$ is an eventually positive solution of the equation (1) for all $t \in\left[t_{0}, \infty\right)$ such that $x^{\prime}(t)<0$. If

$$
\begin{equation*}
\sum_{i=1}^{n} \lim _{t \rightarrow \infty} \int_{t_{0}}^{t} q_{i}(s) d s=\infty \tag{12}
\end{equation*}
$$

and (H2) Either

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{1}^{-1}(t) d t=\infty, \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{1}^{-1}(u)\left(\int_{t_{2}}^{u} a_{2}^{-1}(s) d s\right) d u=\infty, \tag{14}
\end{equation*}
$$

are satisfied. Then $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
Proof. Pick $t_{1} \geq t_{0}$ such that $x\left(g_{i}(t)\right)>0,(i=1,2, \ldots, n)$ for $t \geq t_{1}$. Since $x(t)$ is positive decreasing solution of the equation (1) then, we get, $\lim _{t \rightarrow \infty} x(t)=l_{1} \geq 0$. Assume $l_{1}>0$, then, $x\left(g_{i}(t)\right) \geq l_{1}(i=$ $1,2, \ldots, n)$ for $t \geq t_{2} \geq t_{1}$. Integrating equation (1) from t_{1} to t, we find

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \leq c-x(t) p(t)-\sum_{i=1}^{n} \int_{t_{1}}^{t}\left[q_{i}(s) f\left(x\left(g_{i}(s)\right)\right)-p^{\prime}(s) x(s)\right] d s
$$

where $c:=a_{2}\left(t_{1}\right)\left\{\left(a_{1}\left(t_{1}\right)\left(x^{\prime}\left(t_{1}\right)\right)\right)^{\prime}\right\}+x\left(t_{1}\right) p\left(t_{1}\right)$. It follows that

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \leq c-f\left(l_{1}\right) \sum_{i=1}^{n} \int_{t_{1}}^{t} q_{i}(s) d s
$$

and hence

$$
\begin{equation*}
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \rightarrow-\infty \text { as } t \rightarrow \infty . \tag{15}
\end{equation*}
$$

So, $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}<0$ such that

$$
a_{1}(t)\left(x^{\prime}(t)\right) \leq a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)=k<0 .
$$

Dividing by $a_{1}(t)$ and integrating from t_{2} to t, we get

$$
x(t) \leq x\left(t_{2}\right)+k \int_{t_{2}}^{t} a_{1}^{-1}(s) d s
$$

Letting $t \rightarrow \infty$, then (13) yields $x(t) \rightarrow-\infty$ this contradicts the fact that $x(t)>0$. Otherwise, if (14) is satisfied. From (15), we have, for $A<0$

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \leq A,
$$

for sufficiently large t. Dividing by $a_{2}(t)$ and integrating the above inequality from t_{2} to t, we obtain

$$
a_{1}(t)\left(x^{\prime}(t)\right) \leq A \int_{t_{2}}^{t} a_{2}^{-1}(s) d s
$$

Dividing by $a_{1}(t)$ and integrating from t_{2} to t, we have

$$
x(t) \leq x\left(t_{2}\right)+A \int_{t_{2}}^{t} a_{1}^{-1}(u)\left(\int_{t_{2}}^{u} a_{2}^{-1}(s) d s\right) d u .
$$

Let $t \rightarrow \infty$. From condition (14), we get $x(t) \rightarrow-\infty$ which contradicts the fact that $x(t)>0$. Then $\lim _{t \rightarrow \infty} x(t)=0$.

Theorem 1. Let (H1), (H2), $p^{\prime}(t) \leq 0,(12), g^{\prime}(t)>0$ on $\left[t_{0}, \infty\right)$ hold and equation (5) is oscillatory. If the first order delay equations

$$
\begin{equation*}
y^{\prime}(t)+p_{1}(t) y(t)+q_{1}(t) f(y(g(t)))=0 \tag{16}
\end{equation*}
$$

is oscillatory where

$$
p_{1}(t):=p(t) a_{1}^{-1}(t)\left[\int_{t_{2}}^{t} a_{2}^{-1}(s) d s\right]
$$

and

$$
q_{1}(t):=\sum_{i=1}^{n} q_{i}(t) f\left(\int_{t_{0}}^{g(t)} a_{1}^{-1}(s)\left[\int_{t_{0}}^{s} a_{2}^{-1}(u) d u\right] d s\right)
$$

then equation (1) is oscillatory or tends to zero as $t \rightarrow \infty$.
Proof. Pick $t_{1} \geq t_{0}$ such that $x\left(g_{i}(t)\right)>0,(i=1,2, \ldots, n)$ for $t \geq t_{1}$. Since $x(t)$ is an eventually positive solution of the equation (1) for all $t \in\left[t_{0}, \infty\right)$. Then, from Lemma 1 , it follows that $x^{\prime}(t)>0$ or $x^{\prime}(t)<0$. If $x^{\prime}(t)>0$ from Lemma 2, we have, $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}>0$ and $\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime}<0$, for all $t \geq t_{1}$,then

$$
\begin{aligned}
a_{1}(t)\left(x^{\prime}(t)\right) & =a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)+\int_{t_{2}}^{t} a_{2}^{-1}(s) y(s) d s \\
& \geq y(t) \int_{t_{2}}^{t} a_{2}^{-1}(s) d s
\end{aligned}
$$

where $y(t):=a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}$. It follows that

$$
\begin{equation*}
x^{\prime}(t) \geq a_{1}^{-1}(t) y(t)\left[\int_{t_{2}}^{t} a_{2}^{-1}(s) d s\right] \tag{17}
\end{equation*}
$$

Integrating the above inequality from t_{2} to t, we get

$$
\begin{aligned}
x(t) & \geq \int_{t_{2}}^{t} a_{1}^{-1}(s) y(s)\left[\int_{t_{2}}^{s} a_{2}^{-1}(u) d u\right] d s \\
& \geq y(t) \int_{t_{2}}^{t} a_{1}^{-1}(s)\left[\int_{t_{2}}^{s} a_{2}^{-1}(u) d u\right] d s
\end{aligned}
$$

There exists $t_{3} \geq t_{2}$ such that $g(t) \geq t_{2}$ for all $t \geq t_{3}$. Then

$$
x(g(t)) \geq y(g(t)) \int_{t_{2}}^{g(t)} a_{1}^{-1}(s)\left[\int_{t_{2}}^{s} a_{2}^{-1}(u) d u\right] d s, \text { for all } t \geq t_{3}
$$

Thus equation (1) and (A2) yield, for all $t \geq t_{3}$

$$
\begin{aligned}
-y^{\prime}(t)= & \sum_{i=1}^{n} q_{i}(t) f\left(x\left(g_{i}(t)\right)\right)+p(t) x^{\prime}(t) \geq \sum_{i=1}^{n} q_{i}(t) f(x(g(t)))+p(t) x^{\prime}(t) \\
\geq & \sum_{i=1}^{n} q_{i}(t) f(y(g(t))) f\left(\int_{t_{2}}^{g(t)} a_{1}^{-1}(s)\left[\int_{t_{2}}^{s} a_{2}^{-1}(u) d u\right] d s\right) \\
& +p(t) a_{1}^{-1}(t) y(t)\left[\int_{t_{2}}^{t} a_{2}^{-1}(s) d s\right]
\end{aligned}
$$

Integrating the above inequality from t to ∞, we get

$$
\begin{aligned}
y(t) \geq & \sum_{i=1}^{n} \int_{t}^{\infty} q_{i}(s) f(y(g(s))) f\left(\int_{t_{2}}^{g(s)} a_{1}^{-1}(v)\left[\int_{t_{2}}^{v} a_{2}^{-1}(u) d u\right] d v\right) d s \\
& +\int_{t}^{\infty} p(s) a_{1}^{-1}(s) y(s)\left[\int_{t_{2}}^{s} a_{2}^{-1}(u) d u\right] d s
\end{aligned}
$$

The function $y(t)$ is obviously strictly decreasing. Hence, by [19, Theorem 1$]$ there exists a positive solution of equation (16) which tends to zero this contradicts that (16) is oscillatory. If $x^{\prime}(t)<0$ from Lemma 3, we get $x(t)$ tends to zero as $t \rightarrow \infty$. The proof is complete.

The next results is obtained by using Riccati transformation technique.
Theorem 2. Let $g(t)<t,(H 1),(H 2), p^{\prime}(t) \leq 0,(12), \frac{f(x)}{x} \geq K>0$ hold and equation (5) is oscillatory. Furthermore, assume that there exists a positive differentiable function $\rho \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ for sufficiently large t_{1} such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \sum_{i=1}^{n} \int_{t_{0}}^{t}\left(q_{i}(s) \rho(t)-\frac{\left(\rho^{\prime}(s)-p(s) \rho(s) a_{1}^{-1}(t) \beta_{1}\left(s, t_{0}\right)\right)^{2}}{4 \rho(s) g^{\prime}(s) a_{1}^{-1}(g(t)) \beta_{1}\left(g(s), t_{0}\right)}\right) d s=\infty, \tag{18}
\end{equation*}
$$

Then every solution of equation (1) is oscillatory or tends to zero as $t \rightarrow \infty$.
Proof. Pick $t_{1} \geq t_{0}$ such that $x\left(g_{i}(t)\right)>0$, for $t \geq t_{1}$. Since $x(t)$ is an eventually positive solution of the equation (1) for all $t \in\left[t_{0}, \infty\right)$. Then, from Lemma 1, it follows that $x^{\prime}(t)>0$ or $x^{\prime}(t)<0$. If $x^{\prime}(t)>0$ from Lemma 2, we have, $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}>0$ and $\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime}<0$, for all $t \geq t$. Define the function $w(t)$ by

$$
w(t):=\rho(t) \frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{x(g(t))} .
$$

Then

$$
\begin{aligned}
w^{\prime}(t)= & \frac{\rho(t)}{x(g(t))}\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime} \\
& -a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \frac{\rho(t) x^{\prime}(g(t))}{x^{2}(g(t))} g^{\prime}(t) \\
& +\frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{x(g(t))} \rho^{\prime}(t) .
\end{aligned}
$$

It follows from equation (1), $g(t) \leq g_{i}(t)$

$$
\begin{aligned}
w^{\prime}(t)= & \frac{\rho(t)}{x(g(t))}\left[-\sum_{i=1}^{n} q_{i}(t) f\left(x\left(g_{i}(t)\right)\right)-p(t) x^{\prime}(t)\right] \\
& -a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \frac{\rho(t) x^{\prime}(g(t))}{x^{2}(g(t))} g^{\prime}(t) \\
& +\frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{x(g(t))} \rho^{\prime}(t) \\
\leq & \frac{\rho(t)}{x(g(t))}\left[-\sum_{i=1}^{n} q_{i}(t) f(x(g(t)))-p(t) x^{\prime}(t)\right] \\
& -a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \frac{\rho(t) x^{\prime}(g(t))}{x^{2}(g(t))} g^{\prime}(t) \\
& +\frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{x(g(t))} \rho^{\prime}(t) .
\end{aligned}
$$

From (17) there exists $t_{3} \geq t_{2}$ with $g(t) \geq t_{2}$ for all $t \geq t_{3}$ such that

$$
\begin{align*}
x^{\prime}(g(t)) & \geq a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right) y(g(t)) \\
& \geq a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right) y(t), \tag{19}
\end{align*}
$$

where $y(t):=a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}, y^{\prime}(t)<0$. From the above inequality and (17), we obtain

$$
\begin{aligned}
w^{\prime}(t) \leq & -K \sum_{i=1}^{n} q_{i}(t) \rho(t)-\frac{p(t) \rho(t)}{x(g(t))} a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right) y(t)+\frac{y(t)}{x(g(t))} \rho^{\prime}(t) \\
& -\frac{1}{x^{2}(g(t))} y^{2}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right) \rho(t) g^{\prime}(t)
\end{aligned}
$$

Thus

$$
w^{\prime}(t) \leq-K \sum_{i=1}^{n} q_{i}(t) \rho(t)+\alpha(t) w(t)-\beta(t) w^{2}(t)
$$

where

$$
\alpha(t):=\frac{\rho^{\prime}(t)}{\rho(t)}-p(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right) \text { and } \beta(t):=\frac{1}{\rho(t)} g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)
$$

and hence

$$
\begin{aligned}
w^{\prime}(t) \leq & -K \sum_{i=1}^{n} q_{i}(t) \rho(t)+\frac{\left(\rho^{\prime}(t)-p(t) \rho(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right)\right)^{2}}{4 \rho(t) g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)} \\
& -\left(\sqrt{\beta(t)} w(t)-\frac{\rho^{\prime}(t)-p(t) \rho(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right)}{2 \sqrt{\rho(t) g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)}}\right)^{2}
\end{aligned}
$$

Thus

$$
w^{\prime}(t) \leq-K \sum_{i=1}^{n} q_{i}(t) \rho(t)+\frac{\left(\rho^{\prime}(t)-p(t) \rho(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right)\right)^{2}}{4 \rho(t) g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)}
$$

Integrating the above inequality from t_{2} to t, we have

$$
w(t) \leq w\left(t_{2}\right)-\sum_{i=1}^{n} \int_{t_{2}}^{t}\left(K q_{i}(s) \rho(s)-\frac{\left(\rho^{\prime}(s)-p(s) \rho(s) a_{1}^{-1}(t) \beta_{1}\left(s, t_{2}\right)\right)^{2}}{4 \rho(s) g^{\prime}(s) a_{1}^{-1}(g(t)) \beta_{1}\left(g(s), t_{2}\right)}\right) d s
$$

Letting $t \rightarrow \infty$. By the condition (18), we get $w(t) \rightarrow-\infty$ which contradicts the fact that $w(t)>0$.
When $x^{\prime}(t)<0$. All conditions of Lemma 3 are satisfied. Then $x(t) \rightarrow 0$ as $t \rightarrow \infty$. The proof is complete.

Let $n=1$ Theorem 2 generalize and completes Tiryaki and Aktas [20, Theorem 1].
Theorem 3. Let (H1), (H2), $p^{\prime}(t) \leq 0,(12), f^{\prime}(x) \geq L>0$ and equation (5) is oscillatory. Furthermore, assume that there exists a positive differentiable function $\rho \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ for sufficiently large t_{1} such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left(\sum_{i=1}^{n} q_{i}(s) \rho(s)-\frac{\left(\rho^{\prime}(s)-p(s) \rho(s) a_{1}^{-1}(s) \beta_{1}\left(s, t_{0}\right)\right)^{2}}{4 L \rho(s) g^{\prime}(s) a_{1}^{-1}(g(s)) \beta_{1}\left(g(s), t_{0}\right)}\right) d s=\infty \tag{20}
\end{equation*}
$$

Then every solution of equation (1) is oscillatory or tends to zero as $t \rightarrow \infty$.
Proof. Pick $t_{1} \geq t_{0}$ such that $x\left(g_{i}(t)\right)>0,(i=1,2, \ldots, n)$ for $t \geq t_{1}$. Since $x(t)$ is an eventually positive solution of the equation (1) for all $t \in\left[t_{0}, \infty\right)$. Then, from Lemma 1 , it follows that $x^{\prime}(t)>0$ or $x^{\prime}(t)<0$. If $x^{\prime}(t)>0$ from Lemma 2, we have, $\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}>0$ and $\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime}<0$, for all $t \geq t$. Define the function $w(t)$ by

$$
w(t):=\rho(t) \frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{f(x(g(t)))}
$$

Then

$$
\begin{aligned}
w^{\prime}(t)= & \frac{\rho(t)}{f(x(g(t)))}\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}\right]^{\prime} \\
& -a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \frac{\rho(t) f^{\prime}\left(x(g(t)) x^{\prime}(g(t))\right.}{f^{2}(x(g(t)))} g^{\prime}(t) \\
& +\frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{f(x(g(t)))} \rho^{\prime}(t) .
\end{aligned}
$$

It follows from equation (1), $g(t) \leq g_{i}(t)$

$$
\begin{aligned}
w^{\prime}(t) \leq & \frac{\rho(t)}{f(x(g(t)))}\left[-\sum_{i=1}^{n} q_{i}(t) f(x(g(t)))-p(t) x^{\prime}(t)\right] \\
& -a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\} \frac{\rho(t) f^{\prime}\left(x(g(t)) x^{\prime}(g(t))\right.}{f^{2}(x(g(t)))} g^{\prime}(t) \\
& +\frac{a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)\right)^{\prime}\right\}}{f(x(g(t)))} \rho^{\prime}(t) .
\end{aligned}
$$

From (17) and (19), we obtain

$$
w^{\prime}(t) \leq-\sum_{i=1}^{n} q_{i}(t) \rho(t)+\alpha(t) w(t)-\beta_{1}(t) w^{2}(t)
$$

where

$$
\alpha(t):=\frac{\rho^{\prime}(t)}{\rho(t)}-p(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right) \text { and } \beta_{1}(t):=\frac{L}{\rho(t)} g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)
$$

and hence

$$
\begin{aligned}
w^{\prime}(t) \leq & -\sum_{i=1}^{n} q_{i}(t) \rho(t)+\frac{\left(\rho^{\prime}(t)-p(t) \rho(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right)\right)^{2}}{4 \rho(t) g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)} \\
& -\left(\sqrt{\beta(t)} w(t)-\frac{\left(\rho^{\prime}(t)-p(t) \rho(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right)\right)}{2 \sqrt{\rho(t) L g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)}}\right)^{2}
\end{aligned}
$$

Thus

$$
w^{\prime}(t) \leq-\sum_{i=1}^{n} q_{i}(t) \rho(t)+\frac{\left(\rho^{\prime}(t)-p(t) \rho(t) a_{1}^{-1}(t) \beta_{1}\left(t, t_{2}\right)\right)^{2}}{4 L \rho(t) g^{\prime}(t) a_{1}^{-1}(g(t)) \beta_{1}\left(g(t), t_{2}\right)}
$$

Integrating the above inequality from t_{2} to t, we have

$$
w(t) \leq w\left(t_{2}\right)-\int_{t_{2}}^{t}\left(\sum_{i=1}^{n} q_{i}(s) \rho(s)-\frac{\left(\rho^{\prime}(s)-p(s) \rho(s) a_{1}^{-1}(t) \beta_{1}\left(s, t_{2}\right)\right)^{2}}{4 L \rho(s) g^{\prime}(s) a_{1}^{-1}(g(t)) \beta_{1}\left(g(s), t_{2}\right)}\right) d s
$$

Letting $t \rightarrow \infty$. By the condition (20), we get $w(t) \rightarrow-\infty$ which contradicts the fact that $w(t)>0$. When $x^{\prime}(t)<0$. All conditions of Lemma 3 are satisfied. Then $x(t) \rightarrow 0$ as $t \rightarrow \infty$. The proof is complete.

Let $n=1$ Theorem 3 generalize and improve Aktas et al [7, Theorem 1].
Example 1. Consider the third order delay damped differential equation

$$
\begin{equation*}
\left(\frac{1}{t} x^{\prime}(t)\right)^{\prime \prime}+\frac{1}{4 t^{3}} x^{\prime}(t)+e^{t}\left(x\left(\frac{t}{3}\right)\right)+3 e^{t}\left(x\left(\frac{2 t}{3}\right)\right)=0, t \geq 1 . \tag{21}
\end{equation*}
$$

We note that

$$
\begin{aligned}
& f(x)=x, a_{1}(t)=\frac{1}{t}, a_{2}(t)=1, q_{i}:=(2 i-1) e^{t} \\
& g_{i}(t)=\frac{i t}{3}<t, i=1,2, g^{\prime}(t)>0, \lim _{t \rightarrow \infty} g_{i}(t)=\infty
\end{aligned}
$$

and

$$
\int_{1}^{\infty} a_{1}^{-1}(u) d u=\infty, \int_{1}^{\infty} a_{2}^{-1}(u) d u=\infty
$$

we note that

$$
\begin{equation*}
z^{\prime \prime}(t)+\frac{1}{4 t^{2}} z(t)=0 \tag{22}
\end{equation*}
$$

is nonoscillatory and it easy to see that (12) and (18)hold. Then all conditions of Theorem 2 is satisfied then every nonoscillatory solution of Eq.(21) tends to zero as $t \rightarrow \infty$.

Funding: This research received no external funding.

References

1. R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for difference and functional Differential Equations, Kluwer, Dordrecht, 2000.
2. R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for second order Dynamic Equations, Taylor E Francis, London, 2003
3. R. P. Agarwal, S. R. Grace and D. O'Regan, on the oscillation of certain functional differential equations via comparison methods, J. Math. Anal. Appl. 2003 286, 577-600.
4. R. P. Agarwal, S. R. Grace and D. O'Regan, The oscillation of certain higher order functional differential equations, Adv. math. comput. Modell. 2003,37, 705-728.
5. R. P. Agarwal, S. R. Grace and T. Smith, Oscillation of certain third order functional differential equations, Adv. Math. Sci. Appl. 2006, 16, 69-94.
6. M. F. Aktas, A. Triyaki and A. Zafer, Interval criteria for oscillation of third order nonlinear differential equations. Nonliner Analysis 2009, 71, e1496-e1502.
7. M. F. Aktas, A. Triyaki and A. Zafer, Oscillation criteria for third order nonlinear functional differential equations. Applied Mathematics Letters 2010, 23, 756-762.
8. B. Baculikova and J. Džurina, Oscillation of third-order functional differential equations, E. J.. Qualitative Theory of Diff. Equ. 2010, 43, 1-10.
9. B. Baculikova and J. Džurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Letters 2011,24, 466-470.
10. B. Baculikova, E. M. Elabbasy, S. H. Saker, and J. Džurina, Oscillation criteria for third- order nonlinear differential equations, Math. Slovaca 58 2008, 58, 201-220.
11. L. H. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order nonlinear functional dynamic equations on time scales, Differential equations and Dynamical Systems 2010, 18, 199-227.
12. L. H. Erbe, Q. Kong and B. Z. Zhang, Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995.
13. S. R. Grace, R. P. Agarwal, R. Pavani and E. Thandapani, on the oscilation certain third order nonlinear functional differential equations, Appl. Math. Comput. 2008, 202, 102-112.
14. I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations With Applications, Clarendon Press, Oxford 1991.
15. T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. comput. Modelling.2009, 49 1573-1586.
16. Y. Kitamura, Oscillation of functional differential equations with general deviating arguments, Hiroshima Math. J. 1985, 15, 445-491.
17. T. Kusano, and B. S. Lalli, On oscillation of half -linear functional differential equations with deviating arguments,Hiroshima Math. J. 1994, 24 549-563.
18. G. S. Ladde,V. lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations With Deviating Arguments, Macel Dekker, New York, 1987.
19. Ch. G. Philos, On the nonoscillatory solutions tending to zero at ∞ to differential equations with positive delays, Arch. Math. 1981, 36, 168-178.
20. A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay dufferential equations with damping,J. Math. Anal. Appl. 2007, 325 54-68.
