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Abstract: The purpose of this paper is to give oscillation criteria for the third order nonlinear
differential equation with daming term

[a2(t){(a1(t)x′(t)′}]′ + p(t)x′(t) +
n

∑
i=1

qi(t) f (x(gi(t))) = 0,

by using Riccati trasformatiom teqnique and comparison with first order differential equation whose
oscillatory characters are known. Our results generalize and improve some known results for
oscillation of third order nonlinear differential equations. Some examples are given to illustrate the
main results.
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1. Introduction

In this paper, we are concerned with the oscillation of third order nonlinear differential equation
with damping term

[a2(t){(a1(t)x′(t)′}]′ + p(t)x′(t) +
n

∑
i=1

qi(t) f (x(gi(t))) = 0, (1)

where the following conditions are satisfied

(A1) a1(t), a2(t) p (t) and q (t) ∈ C([t0, ∞) , (0, ∞));
(A2) f ∈ C(R,R) such that x f (x) > 0, f ′(x) > 0 for all x ̸= 0 and − f (−xy) ≥ f (xy) ≥ f (x) f (y) for

xy > 0;
(A3) g(t) ∈ C1([t0, ∞) ,R) for t ∈ [t0, ∞) and lim

t→∞
g(t) = ∞.

We mean by a solution of equation (1) a function x (t) : [tx, ∞) → R, tx ≥ t0 such that
x (t) , a1(t) (x′(t))α1 , a2(t){(a1(t)(x′(t))α1)′}α2 are continuously differentiable for all t ∈ [tx, ∞) and
satisfies (1) for all t ∈ [tx, ∞) and satisfy sup{|x (t)| : t ≥ T} > 0 for any T ≥ tx. A solution of
equation (1) is called oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory.
In the sequel it will be always assumed that equation (1) has nontrivial solutions which exist for all
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t0 ≥ 0. Equation (1) is called oscillatory if all solutions are oscillatory. In fact, Tiryaki and Aktas [20]
studied the oscillation of third order nonlinear differential equation with damping term of the form(

a2(t)
[
a1(t)x′(t)

]′)′
+ p(t)x′(t) + q(t) f (x(g(t))) = 0, (2)

under the condition g(t) ≤ t. Aktas et al [6,7] established some sufficient conditions for the third order
nonlinear differential equations with damping term(

a2(t)
[
a1(t)x′(t)

]′)′
+ p(t)x′(t) + q(t) f (x(t)) = 0,

and (2) without the condition g(t) ≤ t. A number of sufficient conditions for oscillation were obtained
, for k = 1, 2 ∫ ∞

t0

a−1
k (t)dt = ∞, (3)

Therefore it will be great interest to estabilsh oscillation criteria for equation (1) for both of the cases
(3) and ∫ ∞

t0

a−1
k (t)dt < ∞. (4)

By using Riccati transformation technique and a comparison with some first order differential equation
whose oscillatory characters are known. Our results will improve and extend results in [7,20] and
many known results.

2. Main Results

Before stating our main results, we start with the following lemmas which will play an important
role in the proofs of our main results. We let,

δ(t, t0) : =
∫ t

t0

a−1
1 (v)dv, δk(t) :=

∫ ∞

t
a−1

k (v)dv, k = 1, 2

β(t, t0) : =
∫ t

t0

a−1
2 (s)ds, g(t) := min(g1(t), g2(t), ..., gn(t))

Lemma 1. Suppose that

[a2(t)
(
z′(t)

)
]′ +

p(t)
a1(t)

z(t) = 0 (5)

is nonoscillatory. If x is a nonoscillatory solution of (1) on [T, ∞), T ≥ t0, then there exists a t0 ∈ [T, ∞) such
that either x(t)x′(t) > 0 or x(t)x′(t) < 0 for t ≥ t0.

Proof. Suppose that equation (1) has a nonoscillatory solution x on [t0, ∞). Then, without loss
of generality, there is a t1 ∈ [t0, ∞), sufficiently large such that x (t) > 0 and x (g(t)) > 0 on
[t1, ∞) . Clearly, y(t) := −a1(t) (x′(t))α1 is a solution of the second order nonhomogeneous differential
equation

[a2(t)
(
y′(t)

)
]′ +

p(t)
a1(t)

y(t) =
n

∑
i=1

qi(t) f (x(gi(t))), (6)

We claim that the solution (6) are nonoscillatory. Suppose not, let y is oscillatory solution (6) with
consecutive zeros at b and c (t1 < b < c) such that y′(b) ≥ 0 and y′(c) ≤ 0. Let z be a solution of
(5). Multiply (6) by z(t) and using (5), we obtain

z(t)[a2(t)
(
y′(t)

)
]′ − [a2(t)

(
z′(t)

)
]′y(t) =

n

∑
i=1

z(t)qi(t) f (x(gi(t))),
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It can be written as follows

(
a2(t)z(t)y′(t)− a2(t)z′(t)y(t)

)′
=

n

∑
i=1

z(t)qi(t) f (x(gi(t))),

Integrating the above inequality from b to c, we get a contradiction. The proof is complete.

Lemma 2. Assume that
(H1) Either ∫ ∞

t0

a−1
2 (t)dt = ∞, (7)

or ∫ ∞

t0

(
a−1

2 (s)

(
n

∑
i=1

∫ s

t0

(q∗(r) + p∗(r)) dr

))
ds = ∞, (8)

where
q∗(t) := qi(t) f (δ2(g(t))) f (δ(g(t), t2)),

and
p∗(t) := p(t)δ2(t)a−1

1 (t),

hold for g(t) ≥ T. Let x(t) be an eventually positive solution of the equation (1) such that x′ (t) > 0. Then
there exists a T ≥ t0 such that

(a1(t)
(

x′(t)
)
)′ > 0 and [a2(t){(a1(t)

(
x′(t)

)
)′}]′ < 0.

Proof. Pick t1 ≥ t0 such that x(g(t)) > 0, for t ≥ t1. Since x (t) is an eventually positive solution of
the equation (1) such that x′ (t) > 0 for all t ∈ [t0, ∞). From equation (1), (A1) and (A3), we have

[a2(t){(a1(t)
(
x′(t)

)
)′}]′ < 0,

for all t ≥ t1. Then a2(t) (a1(t) (x′(t)))′ is strictly decreasing on [t1, ∞), so either (a1(t) (x′(t)))′ > 0 or
(a1(t) (x′(t)))′ < 0. We claim that (a1(t) (x′(t)))′ > 0 on [t1, ∞). If not, then, we have, a1(t) (x′(t))is
strictly decreasing on [t2, ∞) and there exists a negative constant M such that

a2(t){(a1(t)(x′(t)))′} < M for all t ≥ t2.

Dividing by a2(t) and integrating from t2 to t

a1(t)(x′(t)) ≤ a1(t2)
(
x′(t2)

)
+ M

1
α2

∫ t

t2

a−1
2 (s)ds.

Letting t → ∞, and using (7) then a1(t) (x′(t)) → −∞, which contradicts that x′(t) > 0. Otherwise, if
(8) is satisfied, we have

x(t)− x(t3) =
∫ t

t3

x′ (u) du

=
∫ t

t3

a−1
1 (u)

(
a1(u)

(
x′(u)

))
du

≥
(
a1(t)

(
x′(t)

)) ∫ t

t3

a−1
1 (u)du, for t ≥ t3,

and hence

x(t) ≥
(
a1(t)

(
x′(t)

)) ∫ t

t3

a−1
1 (u)du for t ≥ t3.
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There exists a t4 ≥ t3 with g(t) ≥ t3 for all t ≥ t4 such that

x(g(t)) ≥ y(g(t))δ(g(t), t3) for t ≥ t4.

where y(t) := a1(t) (x′(t)). It is clear that y(t) > 0 and y′(t) < 0. It follows that

−a2(t)(y′(t)) ≥ −a2(t4)(y′(t4)) for t ≥ t4,

thus

−y′(t) ≥ − a2(t4)y′(t4)

a2(t)
for t ≥ t4.

Integrate the above inequality from t to ∞, we get

y(t) ≥ −a2(t4)y′(t4)δ2(t),

then,
y(t) ≥ k1δ2(t), for t ≥ t4 (9)

where k1 := −a2(t4)y′(t4) > 0. There exists a t5 ≥ t4 with g(t) ≥ t4 for all t ≥ t5 such that

y(g(t)) ≥ k1δ2(g(t)) for all t ≥ t5. (10)

The inequality (9) yields
a1(t)

(
x′(t)

)
≥ k1δ2(t),

that is
x′(t) ≥ (k1δ2(t))a−1

1 (t).

From Eq.(1), (10), (A2) and the above inequality, we get, for t ≥ t4,

0 =
(
a2(t)(y′(t))

)′
+ p(t)x′(t) +

n

∑
i=1

qi(t) f (x(gi(t)))

≥ (a2(t)(y′(t)))′ + p(t)x′(t) + f (x(g(t)))
n

∑
i=1

qi(t)

≥
(
a2(t)(y′(t))

)′
+ p(t)(k1δ2(t))a−1

1 (t)

+ f (y(g(t))) f (δ(g(t), t3))
n

∑
i=1

qi(t). (11)

By integrating the above inequality from t5 to t, we get

n

∑
i=1

∫ t

t5

[qi(r) f (k1δ2(g(r))) f (δ(g(r), t3))) + p(r)(k1δ2(r))a−1
1 (r)]dr

≤ a2(t5)(y′(t5))− a2(t)(y′(t)),

Using (A2), we obtain

a−1
2 (t)

(
n

∑
i=1

∫ t

t5

[bq∗(r) + k1 p∗(r)] dr

)
≤ −y′(t),

where b := f (k1). Integrating the above inequality from t5 to ∞, we get

∫ ∞

t5

(
a−1

2 (s)

[
n

∑
i=1

∫ s

t5

(bq∗(r) + k1 p∗(r)) dr

])
ds

≤ y(t5) < ∞,
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which contradicts the condition (8). The proof is complete.

Lemma 3. Assume that p′(t) ≤ 0 hold. Let x(t) is an eventually positive solution of the equation (1) for all
t ∈ [t0, ∞) such that x′(t) < 0. If

n

∑
i=1

lim
t→∞

∫ t

t0

qi(s)ds = ∞, (12)

and (H2) Either ∫ ∞

t0

a−1
1 (t)dt = ∞, (13)

or ∫ ∞

t0

a−1
1 (u)

(∫ u

t2

a−1
2 (s)ds

)
du = ∞, (14)

are satisfied. Then x(t) → 0 as t → ∞.

Proof. Pick t1 ≥ t0 such that x(gi(t)) > 0, (i = 1, 2, ..., n) for t ≥ t1. Since x(t) is positive decreasing
solution of the equation (1) then, we get, lim

t→∞
x(t) = l1 ≥ 0. Assume l1 > 0, then, x(gi(t)) ≥ l1 (i =

1, 2, ..., n) for t ≥ t2 ≥ t1. Integrating equation (1) from t1 to t, we find

a2(t){(a1(t)
(

x′(t)
)
)′} ≤ c − x(t)p(t)−

n

∑
i=1

∫ t

t1

[
qi(s) f (x(gi(s)))− p′(s)x(s)

]
ds.

where c := a2(t1){(a1(t1) (x′(t1)))
′}+ x(t1)p(t1). It follows that

a2(t){(a1(t)
(

x′(t)
)
)′} ≤ c − f (l1)

n

∑
i=1

∫ t

t1

qi(s)ds,

and hence
a2(t){(a1(t)

(
x′(t)

)
)′} → −∞ as t → ∞. (15)

So, (a1(t) (x′(t)))′ < 0 such that

a1(t)
(

x′(t)
)
≤ a1(t2)

(
x′(t2)

)
= k < 0.

Dividing by a1(t) and integrating from t2 to t, we get

x(t) ≤ x(t2) + k
∫ t

t2

a−1
1 (s)ds.

Letting t → ∞, then (13) yields x(t) → −∞ this contradicts the fact that x(t) > 0. Otherwise, if (14) is
satisfied. From (15), we have, for A < 0

a2(t){(a1(t)
(
x′(t)

)
)′} ≤ A,

for sufficiently large t. Dividing by a2(t) and integrating the above inequality from t2 to t, we obtain

a1(t)
(

x′(t)
)
≤ A

∫ t

t2

a−1
2 (s)ds,

Dividing by a1(t) and integrating from t2 to t, we have

x(t) ≤ x(t2) + A
∫ t

t2

a−1
1 (u)

(∫ u

t2

a−1
2 (s)ds

)
du.

Let t → ∞. From condition (14), we get x(t) → −∞ which contradicts the fact that x(t) > 0. Then
lim
t→∞

x(t) = 0.
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Theorem 1. Let (H1), (H2), p′(t) ≤ 0,(12), g′(t) > 0 on [t0, ∞) hold and equation (5) is oscillatory. If the
first order delay equations

y′(t) + p1(t)y(t) + q1(t) f (y(g(t))) = 0, (16)

is oscillatory where

p1(t) := p(t)a−1
1 (t)

[∫ t

t2

a−1
2 (s)ds

]
,

and

q1(t) :=
n

∑
i=1

qi(t) f
(∫ g(t)

t0

a−1
1 (s)

[∫ s

t0

a
−1

2 (u)du
]

ds
)

,

then equation (1) is oscillatory or tends to zero as t → ∞.

Proof. Pick t1 ≥ t0 such that x(gi(t)) > 0, (i = 1, 2, ..., n) for t ≥ t1. Since x (t) is an eventually
positive solution of the equation (1) for all t ∈ [t0, ∞). Then, from Lemma 1, it follows that x′(t) > 0 or
x′(t) < 0. If x′(t) > 0 from Lemma 2, we have, (a1(t) (x′(t)))′ > 0 and [a2(t){(a1(t) (x′(t)))′}]′ < 0, for
all t ≥ t1,then

a1(t)
(

x′(t)
)

= a1(t2)
(
x′(t2)

)
+
∫ t

t2

a−1
2 (s)y(s)ds

≥ y(t)
∫ t

t2

a−1
2 (s)ds,

where y(t) := a2(t){(a1(t) (x′(t)))′}. It follows that

x′(t) ≥ a−1
1 (t)y(t)

[∫ t

t2

a−1
2 (s)ds

]
. (17)

Integrating the above inequality from t2 to t, we get

x(t) ≥
∫ t

t2

a−1
1 (s)y(s)

[∫ s

t2

a−1
2 (u)du

]
ds

≥ y(t)
∫ t

t2

a−1
1 (s)

[∫ s

t2

a−1
2 (u)du

]
ds.

There exists t3 ≥ t2 such that g(t) ≥ t2 for all t ≥ t3. Then

x(g(t)) ≥ y(g(t))
∫ g(t)

t2

a−1
1 (s)

[∫ s

t2

a−1
2 (u)du

]
ds, for all t ≥ t3.

Thus equation (1) and (A2) yield, for all t ≥ t3

−y′(t) =
n

∑
i=1

qi(t) f (x(gi(t))) + p(t)x′(t) ≥
n

∑
i=1

qi(t) f (x(g(t))) + p(t)x′(t)

≥
n

∑
i=1

qi(t) f (y(g(t))) f
(∫ g(t)

t2

a−1
1 (s)

[∫ s

t2

a−1
2 (u)du

]
ds
)

+p(t)a−1
1 (t)y(t)

[∫ t

t2

a−1
2 (s)ds

]
.

Integrating the above inequality from t to ∞, we get

y(t) ≥
n

∑
i=1

∫ ∞

t
qi(s) f (y(g(s))) f

(∫ g(s)

t2

a−1
1 (v)

[∫ v

t2

a−1
2 (u)du

]
dv
)

ds

+
∫ ∞

t
p(s)a−1

1 (s)y(s)
[∫ s

t2

a−1
2 (u)du

]
ds.
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The function y(t) is obviously strictly decreasing. Hence, by [19, Theorem 1] there exists a positive
solution of equation (16) which tends to zero this contradicts that (16) is oscillatory. If x′(t) < 0 from
Lemma 3, we get x(t) tends to zero as t → ∞. The proof is complete.

The next results is obtained by using Riccati transformation technique.

Theorem 2. Let g(t) < t, (H1), (H2), p′(t) ≤ 0,(12), f (x)
x ≥ K > 0 hold and equation (5) is oscillatory.

Furthermore, assume that there exists a positive differentiable function ρ ∈ C1([t0, ∞) ,R) for sufficiently large
t1 such that

lim sup
t→∞

n

∑
i=1

∫ t

t0

qi(s)ρ(t)−

(
ρ′(s)− p(s)ρ(s)a−1

1 (t)β1(s, t0)
)2

4ρ(s)g′(s)a−1
1 (g(t))β1(g(s), t0)

 ds = ∞, (18)

Then every solution of equation (1) is oscillatory or tends to zero as t → ∞.

Proof. Pick t1 ≥ t0 such that x(gi(t)) > 0, for t ≥ t1. Since x (t) is an eventually positive solution
of the equation (1) for all t ∈ [t0, ∞). Then, from Lemma 1, it follows that x′(t) > 0 or x′(t) < 0. If
x′(t) > 0 from Lemma 2, we have, (a1(t) (x′(t)))′ > 0 and [a2(t){(a1(t) (x′(t)))′}]′ < 0, for all
t ≥ t. Define the function w(t) by

w(t) := ρ(t)
a2(t){(a1(t) (x′(t)))′}

x(g(t))
.

Then

w′(t) =
ρ(t)

x(g(t))
[a2(t){(a1(t)

(
x′(t)

)
)′}]′

−a2(t){(a1(t)
(

x′(t)
)
)′}ρ(t)x′(g(t))

x2(g(t))
g′(t)

+
a2(t){(a1(t) (x′(t)))′}

x(g(t))
ρ′(t).

It follows from equation (1), g(t) ≤ gi(t)

w′(t) =
ρ(t)

x(g(t))
[−

n

∑
i=1

qi(t) f (x(gi(t)))− p(t)x′(t)]

−a2(t){(a1(t)
(

x′(t)
)
)′}ρ(t)x′(g(t))

x2(g(t))
g′(t)

+
a2(t){(a1(t) (x′(t)))′}

x(g(t))
ρ′(t)

≤ ρ(t)
x(g(t))

[−
n

∑
i=1

qi(t) f (x(g(t)))− p(t)x′(t)]

−a2(t){(a1(t)
(

x′(t)
)
)′}ρ(t)x′(g(t))

x2(g(t))
g′(t)

+
a2(t){(a1(t) (x′(t)))′}

x(g(t))
ρ′(t).

From (17) there exists t3 ≥ t2 with g(t) ≥ t2 for all t ≥ t3 such that

x′(g(t)) ≥ a−1
1 (g(t))β1(g(t), t2)y(g(t))

≥ a−1
1 (g(t))β1(g(t), t2)y(t), (19)
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where y(t) := a2(t){(a1(t) (x′(t)))′}, y′(t) < 0. From the above inequality and (17), we obtain

w′(t) ≤ −K
n

∑
i=1

qi(t)ρ(t)−
p(t)ρ(t)
x(g(t))

a−1
1 (t)β1(t, t2)y(t) +

y(t)
x(g(t))

ρ′(t)

− 1
x2(g(t))

y2(t)a−1
1 (g(t))β1(g(t), t2)ρ(t)g′(t).

Thus

w′(t) ≤ −K
n

∑
i=1

qi(t)ρ(t) + α(t)w(t)− β(t)w2(t),

where

α(t) :=
ρ′(t)
ρ(t)

− p(t)a−1
1 (t)β1(t, t2) and β(t) :=

1
ρ(t)

g′(t)a−1
1 (g(t))β1(g(t), t2),

and hence

w′(t) ≤ −K
n

∑
i=1

qi(t)ρ(t) +

(
ρ′(t)− p(t)ρ(t)a−1

1 (t)β1(t, t2)
)2

4ρ(t)g′(t)a−1
1 (g(t))β1(g(t), t2)

−

√β(t)w(t)−
ρ′(t)− p(t)ρ(t)a−1

1 (t)β1(t, t2)

2
√

ρ(t)g′(t)a−1
1 (g(t))β1(g(t), t2)

2

.

Thus

w′(t) ≤ −K
n

∑
i=1

qi(t)ρ(t) +

(
ρ′(t)− p(t)ρ(t)a−1

1 (t)β1(t, t2)
)2

4ρ(t)g′(t)a−1
1 (g(t))β1(g(t), t2)

.

Integrating the above inequality from t2 to t, we have

w(t) ≤ w(t2)−
n

∑
i=1

∫ t

t2

Kqi(s)ρ(s)−

(
ρ′(s)− p(s)ρ(s)a−1

1 (t)β1(s, t2)
)2

4ρ(s)g′(s)a−1
1 (g(t))β1(g(s), t2)

 ds.

Letting t → ∞. By the condition (18), we get w(t) → −∞ which contradicts the fact that w(t) > 0.
When x′(t) < 0. All conditions of Lemma 3 are satisfied. Then x(t) → 0 as t → ∞. The proof is
complete.

Let n = 1 Theorem 2 generalize and completes Tiryaki and Aktas [20, Theorem 1].

Theorem 3. Let (H1), (H2), p′(t) ≤ 0,(12), f ′(x) ≥ L > 0 and equation (5) is oscillatory. Furthermore,
assume that there exists a positive differentiable function ρ ∈ C1([t0, ∞) ,R) for sufficiently large t1 such that

lim sup
t→∞

∫ t

t0

 n

∑
i=1

qi(s)ρ(s)−

(
ρ′(s)− p(s)ρ(s)a−1

1 (s)β1(s, t0)
)2

4Lρ(s)g′(s)a−1
1 (g(s))β1(g(s), t0)

 ds = ∞, (20)

Then every solution of equation (1) is oscillatory or tends to zero as t → ∞.

Proof. Pick t1 ≥ t0 such that x(gi(t)) > 0, (i = 1, 2, ..., n) for t ≥ t1. Since x (t) is an eventually
positive solution of the equation (1) for all t ∈ [t0, ∞). Then, from Lemma 1, it follows that x′(t) > 0 or
x′(t) < 0. If x′(t) > 0 from Lemma 2, we have, (a1(t) (x′(t)))′ > 0 and [a2(t){(a1(t) (x′(t)))′}]′ < 0, for
all t ≥ t. Define the function w(t) by

w(t) := ρ(t)
a2(t){(a1(t) (x′(t)))′}

f (x(g(t)))
.
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Then

w′(t) =
ρ(t)

f (x(g(t)))
[a2(t){(a1(t)

(
x′(t)

)
)′}]′

−a2(t){(a1(t)
(

x′(t)
)
)′}ρ(t) f ′(x(g(t))x′(g(t))

f 2(x(g(t)))
g′(t)

+
a2(t){(a1(t) (x′(t)))′}

f (x(g(t)))
ρ′(t).

It follows from equation (1), g(t) ≤ gi(t)

w′(t) ≤ ρ(t)
f (x(g(t)))

[−
n

∑
i=1

qi(t) f (x(g(t)))− p(t)x′(t)]

−a2(t){(a1(t)
(

x′(t)
)
)′}ρ(t) f ′(x(g(t))x′(g(t))

f 2(x(g(t)))
g′(t)

+
a2(t){(a1(t) (x′(t)))′}

f (x(g(t)))
ρ′(t).

From (17) and (19), we obtain

w′(t) ≤ −
n

∑
i=1

qi(t)ρ(t) + α(t)w(t)− β1(t)w2(t),

where

α(t) :=
ρ′(t)
ρ(t)

− p(t)a−1
1 (t)β1(t, t2) and β1(t) :=

L
ρ(t)

g′(t)a−1
1 (g(t))β1(g(t), t2),

and hence

w′(t) ≤ −
n

∑
i=1

qi(t)ρ(t) +

(
ρ′(t)− p(t)ρ(t)a−1

1 (t)β1(t, t2)
)2

4ρ(t)g′(t)a−1
1 (g(t))β1(g(t), t2)

−

√β(t)w(t)−

(
ρ′(t)− p(t)ρ(t)a−1

1 (t)β1(t, t2)
)

2
√

ρ(t)Lg′(t)a−1
1 (g(t))β1(g(t), t2)

2

.

Thus

w′(t) ≤ −
n

∑
i=1

qi(t)ρ(t) +

(
ρ′(t)− p(t)ρ(t)a−1

1 (t)β1(t, t2)
)2

4Lρ(t)g′(t)a−1
1 (g(t))β1(g(t), t2)

.

Integrating the above inequality from t2 to t, we have

w(t) ≤ w(t2)−
∫ t

t2

(
n

∑
i=1

qi(s)ρ(s)−

(
ρ′(s)− p(s)ρ(s)a−1

1 (t)β1(s, t2)
)2

4Lρ(s)g′(s)a−1
1 (g(t))β1(g(s), t2)

)ds.

Letting t → ∞. By the condition (20), we get w(t) → −∞ which contradicts the fact that w(t) > 0.
When x′(t) < 0. All conditions of Lemma 3 are satisfied. Then x(t) → 0 as t → ∞. The proof is
complete.

Let n = 1 Theorem 3 generalize and improve Aktas et al [7, Theorem 1].

Example 1. Consider the third order delay damped differential equation(
1
t

x′(t)
)′′

+
1

4t3 x′(t) + et(x(
t
3
)) + 3et(x(

2t
3
)) = 0, t ≥ 1. (21)
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We note that

f (x) = x, a1(t) =
1
t

, a2(t) = 1, qi := (2i − 1)et,

gi (t) =
it
3
< t, i = 1, 2, g′ (t) > 0, lim

t→∞
gi (t) = ∞,

and ∫ ∞

1
a−1

1 (u)du = ∞,
∫ ∞

1
a−1

2 (u)du = ∞.

we note that
z′′(t) +

1
4t2 z(t) = 0 (22)

is nonoscillatory and it easy to see that (12) and (18)hold. Then all conditions of Theorem 2 is satisfied then
every nonoscillatory solution of Eq.(21) tends to zero as t → ∞.

Funding: This research received no external funding.
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