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Abstract: The purpose of this paper is to give oscillation criteria for the third order nonlinear neutral
differential equation

[a2(t){(a1(t)((x(t) + p(t)x(τ(t)))′)α1)′}α2 ]′ + q(t) f (x(g(t))) = 0.

Via comparison with some first order differential equations whose oscillatory characters are known.
Our results generalize and improve some known results for oscillation of third order nonlinear
differential equations. Some examples are given to illustrate our results.
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1. Introduction

In this paper, we are concerned with the oscillation of third order nonlinear differential equation

[a2(t){[a1(t)
(
z′(t)

)α1 ]′}α2 ]′ + q(t) f (x(g(t))) = 0, (1)

where z(t) := x(t) + p(t)x(τ(t)) and the following conditions are satisfied

(A1) a1(t), a2(t), p (t) and q (t) ∈ C([t0, ∞) , (0, ∞)), 0 ≤ p(t) < 1;
(A2) α1, α2 are quotient of odd positive integers;
(A3) f ∈ C(R,R) such that x f (x) > 0, f ′(x) > 0 for all x ̸= 0 and − f (−xy) ≥ f (xy) ≥ f (x) f (y) for

xy > 0;
(A4) g(t) ∈ C1([t0, ∞) ,R), g(t) ≤ t, for t ∈ [t0, ∞) and lim

t→∞
τ(t) = lim

t→∞
g(t) = ∞.

We mean by a solution of equation (1) a function x (t) : [tx, ∞) → R, tx ≥ t0 such that
z (t) , a1(t) (z′(t))

α1 , a2(t){(a1(t)(z′(t))α1)′}α2 are continuously differentiable for all t ∈ [tx, ∞) and
satisfies (1) for all t ∈ [tx, ∞) and satisfy sup{|x (t)| : t ≥ T} > 0 for any T ≥ tx. A solution of equation
(1) is called oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory. In the sequel
it will be always assumed that equation (1) has nontrivial solutions which exist for all t0 ≥ 0. Equation
(1) is called oscillatory if all solutions are oscillatory. In the last few years, the oscillation theory and
asymptotic behavior of differential equations and their applications have received more and more
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attentions, the reader is referred to the papers [1]-[18] and the references cited there in. In fact, Grace
et al [12] studied the third order nonlinear differential equation of the form

(a(t)
(

x′′(t)
)α
)′ + q(t) f (x(g(t))) = 0. (2)

by comparing equation (2) with a pair of first order delay differential equations. They show that the
oscillation of both of these first order equations implies the oscillation of equation (2). Baculikova and
Džurina [7] investigate oscillatory behavior of solutions of equation (2), which extended and improved
the results given in [12]. Baculikova and Džurina [6] considered the third order nonlinear neutral
differential equation of the form

[a(t){(x(t) + p(t)x(τ(t)))′′}γ]′ + q(t) f (x(g(t))) = 0, (3)

where g(t) ≤ t. Our aim is to investigate the oscillatory criteria for all solutions of equation (1) with
the case, for k = 1, 2 ∫ ∞

t0

a
− 1

αk
k (t)dt = ∞, (4)

By using a Riccati transformation technique and new comparison principles that enable us to deduce
properties of the third order nonlinear differential equation from oscillation the first order nonlinear
delay differential equation.

2. Main Results

The following lemmas will be needed later.

Lemma 1. [6, Lemma 2.11] Suppose that x(t) is nonoscillatory solution of (3) such that x(t)
t is bounded.

Assume that the corresponding function z(t) satisfies limt→∞
z(t)

t = l. If, in addition,

lim
t→∞

p(t) = p∗ ∈ (0, 1), (5)

lim
t→∞

τ(t)
t

= σ∗ < ∞, p∗ σ∗ ̸= 1, (6)

then

lim
t→∞

x(t)
t

=
l

1 + p∗σ∗
.

Lemma 2. [6, Lemma 2.12] Let (5) holds. Suppose that x(t) is nonoscillatory solution of (3) such that x(t)
A(t) is

bounded. Assume that the corresponding function z(t) satisfies limt→∞
z(t)
A(t) = l. If

lim
t→∞

A(τ(t))
A(t)

= σ0 < ∞, p∗ σ∗ ̸= 1, (7)

then

lim
t→∞

x(t)
A(t)

=
l

1 + p∗σ0
,

where A(t) :=
∫ t

t0

∫ u
t0

a
− 1

α2
2 (s)dsdu.

Before stating our main results, we start with the following lemmas which will play an important
role in the proofs of our main results.

Lemma 3. Assume that (4) holds. Let x(t) be an eventually positive solution of the equation (1). Then there
exists a T ≥ t0 such that either

(1) z′ (t) > 0, (a1(t) (z′(t))
α1)′ > 0 for all t ≥ T; or (2) z′ (t) < 0, (a1(t) (z′(t))

α1)′ > 0 for all t ≥ T.
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Proof. Pick t1 ≥ t0 such that x(g(t)) > 0, for t ≥ t1. From Eq. (1), (A1) and (A3), we have

[a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ]′ ≤ 0,

for all t ≥ t1. That is a2(t) (a1(t) (z′(t))
α1)′ is strictly decreasing on [t1, ∞), and thus z′ (t) and

(a1(t) (z′(t))
α1)′ are eventually of one sign. We claim that(

a1(t)
(
z′(t)

)α1
)′

> 0,

on [t1, ∞). If not, then, we have two cases.
Case 1. There exists t2 ≥ t1, sufficiently large, such that

z′ (t) > 0 and (a1(t)
(
z′(t)

)α1)′ < 0 for t ≥ t2,

thus, a1(t) (z′(t))
α1 is strictly decreasing on [t2, ∞) and there exists a negative constant M such that

a2(t){(a1(t)z′(t))α1)′}α2 ≤ M for all t ≥ t2. Dividing by a2(t) and integrating from t2 to t, we obtain

a1(t)(z′(t))α1 ≤ a1(t2)
(
z′(t2)

)α1 + M
1

α2

∫ t

t2

a
− 1

α2
2 (s)ds.

Letting t → ∞ and using (4) then a1(t) (z′(t))
α1 → −∞ which contradicts that z′(t) > 0.

Case 2. There exists t2 ≥ t1, sufficiently large, such that

z′ (t) < 0 and (a1(t)
(
z′(t)

)α1)′ < 0 for t ≥ t2,

which implies that
a1(t)

(
z′(t)

)α1 ≤ a1(t2)
(
z′(t2)

)α1 = k < 0.

Dividing by a1(t) and integrating from t2 to t, we get

z(t) ≤ z(t3) + k
1

α1

∫ t

t2

a
− 1

α1
1 (s)ds.

Letting t → ∞, then (4) yields z(t) → −∞ this contradicts the fact that z(t) > 0. Then, we
have

(
a1(t) (z′(t))

α1
)′

> 0 for t ≥ t1 and of one sign thus either z′ (t) > 0 or z′ (t) < 0.

The next result deals with the case τ(t) ≤ t . Define

β(t, T) :=
∫ t

T
a
− 1

α1
1 (s)

[∫ s

T
a
− 1

α2
2 (u)du

] 1
α1

ds, β1(t, T) :=
∫ t

T
a
− 1

α2
2 (u)du.

Theorem 1. Assume that 0 ≤ p(t) ≤ p < 1 and (4) hold. If the first order delay equation

y′(t) + q(t) f (y
1

α1α2 (g(t))) f ((1 − p(g(t))))) f (β(g(t), T)) = 0, (8)

is oscillatory and ∫ ∞

t0

a
− 1

α1
1 (v)

[∫ ∞

v
a
− 1

α2
2 (u)

(∫ ∞

u
q(s)ds

) 1
α2

du

] 1
α1

dv = ∞, (9)

then every solution of equation (1) is oscillatory or tends to zero as t → ∞.

Proof. Assume (1) has a nonoscillatory solution. Then, without loss of generality, there is a t1 ≥
t0, sufficiently large such that x (t) > 0 and x (g(t)) > 0 on [t1, ∞). From equation (1), (A1) and (A3),
we have

[a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ]′ ≤ 0
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for all t ≥ t1. That is a2(t) (a1(t) (z′(t))
α1)′ is strictly decreasing on [t1, ∞) and thus

(a1(t) (z′(t))
α1)′ and z′(t) are eventually of one sign. By Lemma 3, we have one of the following

cases, for t2 ≥ t1, is sufficiently large
(1) z′ (t) > 0, (a1(t) (z′(t))

α1)′ > 0,
(2) z′ (t) < 0, (a1(t) (z′(t))

α1)′ > 0,
From Case 1, we have, for t ≥ t2

a1(t)
(
z′(t)

)α1 = a1(t2)
(
z′(t2)

)α1 +
∫ t

t2

a
− 1

α2
2 (s)y

1
α2 (s)ds

≥ y
1

α2 (t)
∫ t

t2

a
− 1

α2
2 (s)ds,

where y(t) := a2(t){(a1(t) (z′(t))
α1)′}α2 . It follows that

z′(t) ≥ a
− 1

α1
1 (t) y

1
α1α2 (t)

[∫ t

t2

a
− 1

α2
2 (s)ds

] 1
α1

. (10)

Integrating the above inequality from t2 to t, we get

z(t) ≥
∫ t

t2

a
− 1

α1
1 (s)y

1
α1α2 (s)

[∫ s

t2

a
− 1

α2
2 (u)du

] 1
α1

ds

≥ y
1

α1α2 (t)β(t, t2).

There exists t3 ≥ t2 with g(t) ≥ t2 for all t ≥ t3 such that

z(g(t)) ≥ y
1

α1α2 (g(t))β(g(t), t2). (11)

Since z′(t) > 0 and τ(g(t)) ≤ g(t), then

x(g(t)) = z(g(t))− p(g(t))x(τ (g(t)))

≥ z(g(t))− p(g(t))z(τ (g(t)))

≥ z(g(t)) (1 − p(g(t))) . (12)

The above inequality and (11) yield

x(g(t)) ≥ (1 − p(g(t))) y
1

α1α2 (g(t))β(g(t), t2).

From equation (1) and (A3), we have

−y′(t) = q(t) f (x(g(t)))

≥ q(t) f ((1 − p(g(t)))) f (y
1

α1α2 (g(t))) f (β(g(t), t2)) .

Integrating the above inequality from t to ∞, we get

y(t) ≥
∫ ∞

t
q(s) f (y

1
α1α2 (g(s))) f ((1 − p(g(s))))) f (β(g(s), t2)) ds.

The function y(t) is obviously strictly decreasing. Hence, by [18, Theorem 1] there exists a positive
solution of equation (8) with lim

t→∞
y(t) = 0 which contradicts that (8) is oscillatory.
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For the Case 2. Pick t1 ≥ t0 such that x(g(t)) > 0, for t ≥ t1. Since x (t) is an eventually positive
solution of the equation (1) for all t ∈ [t0, ∞) and z′ (t) < 0, then lim

t→∞
z(t) = l1 ≥ 0. Assume that

l1 > 0, then, for any ϵ > 0, we have l + ϵ > z(t) > l, eventually. Choose 0 < ϵ < l(1−p)
p , we get

x(t) = z(t)− p(t)x(τ (t))

≥ l − pz(τ (t))

≥ l − p(l + ϵ) > kz(t) (13)

where, k := l−p(l+ϵ)
l+ϵ > 0, z(g(t)) ≥ l1 for t ≥ t4 ≥ t3. Integrating equation (1) from t to ∞, we obtain

a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ≥
∫ ∞

t
q(s) f (x(g(s)))ds

≥
∫ ∞

t
q(s) f (kz(g(s)))ds.

It follows from (A3) that

(a1(t)
(
z′(t)

)α1)′ ≥ ( f (k) f (l))
1

α2 a
− 1

α2
2 (t)

(∫ ∞

t
q(s)ds

) 1
α2

,

Integrating the above inequality from t to ∞, we get

−z′(t) ≥ b

a
1

α1
1 (t)

[∫ ∞

t
a
− 1

α2
2 (u)

(∫ ∞

u
q(s)ds

) 1
α2

du

] 1
α1

.

where b := ( f (k) f (l))
1

α1α2 . By integrating the last inequality from t4 to ∞, we have

z(t4) ≥ b
∫ ∞

t4

a
− 1

α1
1 (v)

[∫ ∞

v
a
− 1

α2
2 (u)

(∫ ∞

u
q(s)ds

) 1
α2

du

] 1
α1

dv.

This contradicts to the condition (9), then lim
t→∞

z(t) = 0. Since 0 < x(t) ≤ z(t) then lim
t→∞

x(t) = 0. The

proof is complete.

Remark 1. When a1(t) ≡ 1 and α1 ≡ 1, Theorem 1 is reduced to [6, Theorem 2. 4].

Example 1. Consider the third order delay differential equation

[t{( 1
t2 ((x(t) +

1
2

x(
t
3
)′)

1
5 )′}5]′ +

1
t

f (x(
t
2
)) = 0, t ≥ 1. (14)

We note that

f (y) = y, τ (t) =
t
3
< t,

g (t) =
t
2
< t, g′ (t) > 0, lim

t→∞
g (t) = lim

t→∞

t
2
= ∞,

and
a1(t) =

1
t2 , a2(t) = t, α1 =

1
5

, α2 = 5,

and ∫ ∞

1
a
− 1

α1
1 (u)du = ∞,

∫ ∞

1
a
− 1

α2
2 (u)du = ∞.
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It easy to see that condition (9) holds and Eq.(8), reduces to

y′(t) +
1
t

(
b1 + b2t15 − b3t71/5 + b4t67/5 − b5t63/5 + b6t59/5 − b7t11

)
y
(

t
2

)
= 0. (15)

where bi > 0, i = 1 → 7. On the other hand, Theorem 1 guarantees the oscillation of (15). Since

lim
t→∞

∫ t

t
2

(
b1

s
+ b2s14 − b3s56/5 + b4s62/5 − b5s48/5 + b6s54/5 − b7s10

)
ds >

1
e

.

Then equation (15) is oscillatory and according to Theorem 1 every nonoscillatory solution of Eq.(14) tends to
zero as t → ∞.

When τ(t) ≥ t, we obtain the following result.

Theorem 2. Let g′(t) > 0 on [t0, ∞) and (4) hold and there exists a function ξ (t) such that

ξ ′ (t) ≥ 0, ξ (t) > t and η(t) = g(ξ (ξ (t))) < t (16)

If the first order delay equations

z′(t) + q1(t) f
1

α1α2 (z((η (t))) = 0, (17)

where,

q1(t) := a
− 1

α1
1 (t)(

∫ ξ(t)

t
a
− 1

α2
2 (u)(

∫ ξ(u)

u
q(s) f ((1 − p(g(s)))) ds)

1
α2 du)

1
α1 ,

is oscillatory. Then every solution of (1) is either oscillatory or lim sup
t→∞

|x(t)| = ∞.

Proof. Assume (1) has a nonoscillatory solution. Then, without loss of generality, there is a t1 ≥
t0, sufficiently large such that x (t) > 0 and x (g(t)) > 0 on [t1, ∞) . From equation (1), (A1) and (A3),
we have

[a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ]′ ≤ 0

for all t ≥ t1. That is a2(t) (a1(t) (z′(t))
α1)′ is strictly decreasing on [t1, ∞) and thus

(a1(t) (z′(t))
α1)′ and z′(t) are eventually of one sign. Then, from Lemma 3 we have, one of the

following cases
(1) z′ (t) > 0, (a1(t) (z′(t))

α1)′ > 0,
(2) z′ (t) < 0, (a1(t) (z′(t))

α1)′ > 0,
For the Case 1. Since z (t) > 0 and z′ (t) > 0 then lim

t→∞
z(t) = ∞ and from the definition of z(t), we

have lim sup
t→∞

|x(t)| = ∞.

For the Case 2. Since z′ (t) < 0 and τ(t) ≥ t, we obtain

x(t) = z(t)− p(t)x(τ(t)) ≥ z(t)− p(t)z(τ(t)) ≥ z(t)(1 − p(t)).

There exists t3 ≥ t2 with g(t) ≥ t2 for all t ≥ t3 such that

x(g(t)) ≥ z(g(t))(1 − p(g(t))).

Thus equation (1) and (A3) yield

−[a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ]′ = q(t) f (x(g(t)))

≥ q(t) f ((1 − p(g(t)))) f (z(g(t))).
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By integrating the above inequality from t to ξ(t), we get

a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ≥ f (z(g(ξ(t))))
∫ ξ(t)

t
q(s) f ((1 − p(g(s)))) ds,

then,

(a1(t)
(
z′(t)

)α1)′ ≥ a
− 1

α2
2 (t) f

1
α2 (z(g(ξ(t))))(

∫ ξ(t)

t
q(s) f ((1 − p(g(s)))) ds)

1
α2 .

Again, integrate the above inequality from t to ξ(t), we obtain

− a1(t)
(
z′(t)

)α1

≥
∫ ξ(t)

t
a
− 1

α2
2 (u) f

1
α2 (z(g(ξ(u))))(

∫ ξ(u)

u
q(s) f ((1 − p(g(s)))) ds)

1
α2 du

≥ f
1

α2 (z(η(t)))
∫ ξ(t)

t
a
− 1

α2
2 (u)(

∫ ξ(u)

u
q(s) f ((1 − p(g(s)))) ds)

1
α2 du.

It follows that,

−z′(t) ≥ q1(t) f
1

α1α2 (z(η(t))).

Hence, by [18, Theorem 1] there exists a positive solution of equation (17) with lim
t→∞

z(t) = 0 which

contradicts that (8) is oscillatory.

When a1(t) = 1 and α1 = 1, Theorem 2 is reduced to [6, Theorem 2. 10].

Lemma 4. Suppose that x(t) is nonoscillatory solution of (1) such that x(t)
t is bounded. Assume that the

corresponding function z(t) satisfies lim
t→∞

z(t)
t = l. If (5) and (6) hold then

lim
t→∞

x(t)
t

=
l

1 + p∗σ∗
.

Lemma 5. Let (5) holds. Suppose that x(t) is nonoscillatory solution of (1) such that x(t)
β(t,T) is bounded. Assume

that the corresponding function z(t) satisfies lim
t→∞

z(t)
β(t,T) = l. If

lim
t→∞

β(τ(t), T)
β(t, T)

= σ0 < ∞, p∗σ∗ ̸= 1, (18)

then

lim
t→∞

x(t)
β(t, T)

=
l

1 + p∗σ0
.

Theorem 3. Let (5)-(7) hold. Assume that all condition of Theorem 2 are satisfied. Then every nonoscillatory
solution x(t) of (1) satisfies one of the conditions:

lim
t→∞

tϵ |x(t)|
β(t, T)

= ∞ and lim
t→∞

|x(t)|
β(t, T)

= k2 > 0, (19)

lim
t→∞

tϵ−1 |x(t)| = ∞ and lim
t→∞

|x(t)|
t

= k1 > 0, (20)

lim sup
t→∞

|x(t)|
t

= ∞ and lim
t→∞

|x(t)|
β(t, T)

= 0, (21)

where ϵ > 0 is arbitrary.

Proof. Assume that x(t) > 0 for all t ∈ [t0, ∞). From Theorem 2 and (1), we have

z(t) > 0, z′ (t) > 0, (a1(t)
(
z′(t)

)α1)′ > 0, [a2(t){(a1(t)
(
z′(t)

)α1)′}α2 ]′ ≤ 0.
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It follows that
lim
t→∞

a2(t){(a1(t)
(
z′(t)

)α1)′}α2 = l1.

Using l’Hospital’s rule, we get

lim
t→∞

z(t)
β(t, T)

=

(
lim
t→∞

a1(t) (z′(t))
α1

β1(t, T)

) 1
α1

=

(
lim
t→∞

a2(t){(a1(t)
(
z′(t)

)α1)′}α2

) 1
α1α2

= l,

where l := l
1

α1α2
1 . Since 0 < x(t)

β(t,T) <
z(t)

β(t,T) , then x(t)
β(t,T) is bounded. From Lemma 5, we get

lim
t→∞

x(t)
β(t, T)

=
l

1 + p∗σ0
= k2.

Therefore, if l ̸= 0, then x(t) satisfies (19). If l = 0, then lim
t→∞

x(t)
β(t,T) = 0. Let

lim
t→∞

z′(t) = l1.

By l’Hospital’s rule, we obtain

lim
t→∞

z(t)
t

= lim
t→∞

z′(t) = l1.

If l1 < ∞, then by Lemma 4, we get

lim
t→∞

x(t)
β(t, T)

=
l1

1 + p∗σ0
= k1.

That is x(t) satisfies (20). If l1 = ∞, then by Lemma 4, we have

lim sup
t→∞

x(t)
t

= ∞.

Thenx(t) satisfies (21).

Example 2. Consider the third order delay differential equation

[
1
t2 {(

1
t
((x(t) +

1
4

x(3t)′)3)′}1/3]′ +
1
t3 f (x(

t
4
)) = 0, t ≥ 1. (22)

We note that

f (y) = y, τ (t) = 3t > t, ξ(t) =
3
2

t > t,

g (t) =
t
4
< t, g′ (t) > 0, lim

t→∞
g (t) = lim

t→∞

t
4
= ∞,

and
a1(t) =

1
t

, a2(t) =
1
t2 , α1 = 3, α2 = 1/3,

and ∫ ∞

1
a
− 1

α1
1 (u)du = ∞,

∫ ∞

1
a
− 1

α2
2 (u)du = ∞.

It is easy to see that Eq.(17) is reduced to

y′(t) + ct
5
3 y
(

9t
16

)
= 0. (23)
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where c > 0. Since

lim
t→∞

∫ t

t
4

(
cs

5
3

)
ds >

1
e

,

then (23) is oscillatory according to [17, Theorem 2.1.1]. By Theorem 3, every nonoscillatory of (22) satisfies one
of the conditions (19)- (21)

Now, when τ(t) ≥ t, we obtain the following result using the Riccati transformation techniques .

Theorem 4. Let g′(t) > 0 on [t0, ∞) , α1α2 = 1, f (u)
u ≥ K > 0, (4) and (9) hold. Furthermore, assume that

there exists a positive function ρ such that

lim sup
t→∞

∫ t

t0

(
q(s) (1 − p(g(s)))− ρ′2(s)

4ρ(s)g′(s)β1(g(s), T)

)
ds = ∞ (24)

where β1(g(t), T) := a
− 1

α1
1 (g(t))

[∫ g(t)
T a

− 1
α2

2 (s)ds
] 1

α1
, for g(t) ≥ T. Then every solution of equation (1) is

either oscillatory or tends to zero as t → ∞.

Proof. To the contrary assume that equation (1) has a nonoscillatory solution. Then, without loss of
generality, there is a t1 ≥ t0, sufficiently large such that x (t) > 0 and x (g(t)) > 0 on [t1, ∞) . From (1),
(A1) and (A3), we have [a2(t){(a1(t) (z′(t))

α1)′}α2 ]′ ≤ 0 for all t ≥ t1. Then a2(t) (a1(t) (z′(t))
α1)′ is

strictly decreasing on [t1, ∞) . That is (a1(t) (z′(t))
α1)′ and z′(t) are eventually of one sign. By Lemma

3 we have, one of the following two cases, for t2 ≥ t1, is sufficiently large
(1) z′ (t) > 0, (a1(t) (z′(t))

α1)′ > 0,
(2) z′ (t) < 0, (a1(t) (z′(t))

α1)′ > 0,
Case 1. In this case, define the function w(t) by

w(t) := ρ(t)
a2(t){(a1(t) (z′(t))

α1)′}α2

z(g(t))
.

Then

w′(t) =
ρ(t)

z(g(t))
[a2(t){(a1(t)

(
z′(t)

)α1)′}α2 ]′

− a2(t){(a1(t)
(
z′(t)

)α1)′}α2
ρ(t)z′(g(t))

z2(g(t))
g′(t)

+
a2(t){(a1(t) (z′(t))

α1)′}α2

z(g(t))
ρ′(t).

It follows from equation (1) that

w′(t) =
ρ(t)

z(g(t))
[−q(t) f (x(g(t)))]

− a2(t){(a1(t)
(
z′(t)

)α1)′}α2
ρ(t)z′(g(t))

z2(g(t))
g′(t)

+
a2(t){(a1(t) (z′(t))

α1)′}α2

z(g(t))
ρ′(t).

From (10) there exists t3 ≥ t2 with g(t) ≥ t2 for all t ≥ t3 such that

z′(g(t)) ≥ β1(g(t), t2)y
1

α1α2 (g(t)),

where y(t) := a2(t){(a1(t) (z′(t))
α1)′}α2 . Since y′ < 0, g(t) < t, we get

z′(g(t)) ≥ β1(g(t), t2)y
1

α1α2 (t).
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From the above inequality and (12), we obtain

w′(t) ≤ −Kq(t) (1 − p(g(t))) +
y(t)

z(g(t))
ρ′(t)

− 1
z2(g(t))

y2(t)β1(g(t), t2)ρ(t)g′(t).

Thus

w′(t) ≤ −Kq(t) (1 − p(g(t))) +
ρ′(t)
ρ(t)

w(t)− g′(t)β1(g(t), t2)
w2(t)
ρ(t)

,

= −Kq(t) (1 − p(g(t))) +
ρ′2(t)

4ρ(t)g′(t)β1(g(t), t2)

−
(√

g′(t)β1(g(t), t2)

ρ(t)
w(t)− ρ′(t)

2
√

ρ(t)g′(t)β1(g(t), t2)

)2

.

and hence

w′(t) ≤ −Kq(t) (1 − p(g(t))) +
ρ′2(t)

4ρ(t)g′(t)β1(g(t), t2)
.

Integrate the above inequality from t2 to t, we have

w(t) ≤ w(t2)−
∫ t

t2

(
Kq(s) (1 − p(g(s)))− ρ′2(s)

4ρ(s)g′(s)β1(g(s), t2)

)
ds.

Letting t → ∞ and using (24), we get w(t) → −∞ which contradicts that w(t) > 0.

Consider the third order delay differential equation

[t{(1
t
((x(t) +

1
2

x(3t)′)3)′}1/3]′ + t3 f (x(
t
2
)) = 0, t ≥ 1. (25)

We note that

f (y) = y, τ (t) = 3t > t, ρ(t) = 1,

g (t) =
t
2
< t, g′ (t) > 0, lim

t→∞
g (t) = lim

t→∞

t
2
= ∞.

Also,

a1(t) =
1
t

, a2(t) = t, α1 = 1/3, α2 = 3,

and ∫ ∞

1
a
− 1

α1
1 (u)du = ∞,

∫ ∞

1
a
− 1

α2
2 (u)du = ∞.

It is easy to see that (9) and (24) are hold. Then every nonoscillatory solution of equation (25) tends to
zero as t → ∞.
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